ترغب بنشر مسار تعليمي؟ اضغط هنا

Specific Heat and Electrical Transport Properties of Sn0.8Ag0.2Te Superconductor

68   0   0.0 ( 0 )
 نشر من قبل Yoshikazu Mizuguchi
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Sn0.8Ag0.2Te is a new superconductor with Tc ~ 2.4 K. The superconducting properties of Sn0.8Ag0.2Te have been investigated by specific heat measurements under magnetic fields. Bulk nature of superconductivity was confirmed from the amplitude of the specific heat jump at the superconducting transition, and the amplitude is consistent with fully-gapped superconductivity. Upper critical field was estimated from specific heat and electrical resistivity measurements under magnetic fields. The Hall coefficient was positive, suggesting that the Ag acts as a p-type dopant in Sn0.8Ag0.2Te.



قيم البحث

اقرأ أيضاً

We report specific heat under different magnetic fields for recently discovered quasi-one dimensional Nb2PdS5 superconductor. The studied compound is superconducting below 6 K. Nb2PdS5 is quite robust against magnetic field with dHc/dT of -42 kOe/K. The estimated upper critical field [Hc2(0)] is 190 kOe, clearly surpassing the Pauli-paramagnetic limit of 1.84Tc. Low temperature heat capacity in superconducting state of Nb2PdS5 under different magnetic fields showed s-wave superconductivity with two different gaps. Two quasi-linear slopes in Somerfield-coefficient as a function of applied magnetic field and two band behavior of the electronic heat capacity demonstrate that Nb2PdS5 is a multiband su-perconductor in weak coupling limit with deltagamma/deltaTc=0.9.
A high-entropy-alloy-type (HEA-type) superconductor is new category of highly disordered superconductors. Therefore, finding brand-new superconducting characteristics in the HEA-type superconductors would open new avenue to investigate the relationsh ip between structural disorder and superconductivity. Here, we report on the remarkable broadening of specific heat jump near a superconducting transition tempreature (Tc) in transition-metal zirconides (TrZr2) with different mixing entropy ({Delta}Smix) at the Tr site. With increasing {Delta}Smix, the superconducting transition seen in specific heat became broader, whereas those seen in magnetization were commonly sharp. Therefore the broadening of specific heat jump would be related to the microscopic inhomogeneity of the formation of Cooper pairs behind the emergence of bulk superconductivity states.
The low-temperature specific heat of a superconductor Mo3Sb7 with T_c = 2.25 (0.05) K has been measured in magnetic fields up to 5 T. In the normal state, the electronic specific heat coefficient gamma_n, and the Debye temperature Theta_D are found t o be 34.5(2) mJ/molK^2 and 283(5) K, respectively. The enhanced gamma_n value is interpreted due to a narrow Mo-4d band pinned at the Fermi level. The electronic specific heat in the superconducting state can be analyzed in terms a phenomenological two BCS-like gap model with the gap widths 2Delta_1/k_BT_c = 4.0 and 2Delta_2/k_BT_c = 2.5, and relative weights of the mole electronic heat coefficients gamma_1/gamma_n = 0.7 and gamma_2/gamma_n = 0.3. Some characteristic thermodynamic parameters for the studied superconductor, like the specific heat jump at T_c, DeltaC_p(T_c)/gamma_nT_c, the electron-phonon coupling constant,lambda_eph, the upper H_c2 and thermodynamic critical H_c0 fields, the penetration depth, lambda, coherence length xi, and the Ginzburg-Landau parameter kappa are evaluated. The estimated values of parameters like 2Delta/k_BT_c, DeltaC_p(T_c)/gamma_nT_c, N(E_F), and lambda_eph suggest that Mo3Sb7 belongs to intermediate-coupling regime. The electronic band structure calculations indicate that the density of states near the Fermi level is formed mainly by the Mo-4d orbitals and there is no overlapping between the Mo- 4d and Sb-sp orbitals.
We have grown single crystals of EuFe2As2 and investigated its electrical transport and thermodynamic properties. Electrical resistivity and specific heat measurements clearly establish the intrinsic nature of magnetic phase transitions at 20 K and 1 95 K. While the high temperature phase transition is associated with the itinerant moment of Fe, the low temperature phase transition is due to magnetic order of localized Eu-moments. Band structure calculations point out a very close similarity of the electronic structure with SrFe2As2. Magnetically, the Eu and Fe2As2 sublattice are nearly de-coupled.
Preliminary evidence for the occurrence of high-Tc superconductivity in alkali-doped organic materials, such as potassium-doped p-terphenyl (KPT), were recently obtained by magnetic susceptibility measurements and by the opening of a large supercondu cting gap as measured by ARPES and STM techniques. In this work, KPT samples have been synthesized by a chemical method and characterized by low-temperature Raman scattering and resistivity measurements. Here, we report the occurrence of a resistivity drop of more than 4 orders of magnitude at low temperatures in KPT samples in the form of compressed powder. This fact was interpreted as a possible sign of a broad superconducting transition taking place below 90 K in granular KPT. The granular nature of the KPT system appears to be also related to the 20 K broadening of the resistivity drop around the critical temperature.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا