ﻻ يوجد ملخص باللغة العربية
We study the problem of a seller dynamically pricing $d$ distinct types of indivisible goods, when faced with the online arrival of unit-demand buyers drawn independently from an unknown distribution. The goods are not in limited supply, but can only be produced at a limited rate and are costly to produce. The seller observes only the bundle of goods purchased at each day, but nothing else about the buyers valuation function. Our main result is a dynamic pricing algorithm for optimizing welfare (including the sellers cost of production) that runs in time and a number of rounds that are polynomial in $d$ and the approximation parameter. We are able to do this despite the fact that (i) the price-response function is not continuous, and even its fractional relaxation is a non-concave function of the prices, and (ii) the welfare is not observable to the seller. We derive this result as an application of a general technique for optimizing welfare over emph{divisible} goods, which is of independent interest. When buyers have strongly concave, Holder continuous valuation functions over $d$ divisible goods, we give a general polynomial time dynamic pricing technique. We are able to apply this technique to the setting of unit demand buyers despite the fact that in that setting the goods are not divisible, and the natural fractional relaxation of a unit demand valuation is not strongly concave. In order to apply our general technique, we introduce a novel price randomization procedure which has the effect of implicitly inducing buyers to regularize their valuations with a strongly concave function. Finally, we also extend our results to a limited-supply setting in which the number of copies of each good cannot be replenished.
In this paper we study the fundamental problems of maximizing a continuous non-monotone submodular function over the hypercube, both with and without coordinate-wise concavity. This family of optimization problems has several applications in machine
The prevalence of e-commerce has made detailed customers personal information readily accessible to retailers, and this information has been widely used in pricing decisions. When involving personalized information, how to protect the privacy of such
We study the design of multi-item mechanisms that maximize expected profit with respect to a distribution over buyers values. In practice, a full description of the distribution is typically unavailable. Therefore, we study the setting where the desi
Several behavioral, social, and public health interventions, such as suicide/HIV prevention or community preparedness against natural disasters, leverage social network information to maximize outreach. Algorithmic influence maximization techniques h
We study the problem of matching agents who arrive at a marketplace over time and leave after d time periods. Agents can only be matched while they are present in the marketplace. Each pair of agents can yield a different match value, and the planner