ﻻ يوجد ملخص باللغة العربية
In the classic Integer Programming (IP) problem, the objective is to decide whether, for a given $m times n$ matrix $A$ and an $m$-vector $b=(b_1,dots, b_m)$, there is a non-negative integer $n$-vector $x$ such that $Ax=b$. Solving (IP) is an important step in numerous algorithms and it is important to obtain an understanding of the precise complexity of this problem as a function of natural parameters of the input. The classic pseudo-polynomial time algorithm of Papadimitriou [J. ACM 1981] for instances of (IP) with a constant number of constraints was only recently improved upon by Eisenbrand and Weismantel [SODA 2018] and Jansen and Rohwedder [ArXiv 2018]. We continue this line of work and show that under the Exponential Time Hypothesis (ETH), the algorithm of Jansen and Rohwedder is nearly optimal. We also show that when the matrix $A$ is assumed to be non-negative, a component of Papadimitrious original algorithm is already nearly optimal under ETH. This motivates us to pick up the line of research initiated by Cunningham and Geelen [IPCO 2007] who studied the complexity of solving (IP) with non-negative matrices in which the number of constraints may be unbounded, but the branch-width of the column-matroid corresponding to the constraint matrix is a constant. We prove a lower bound on the complexity of solving (IP) for such instances and obtain optimal results with respect to a closely related parameter, path-width. Specifically, we prove matching upper and lower bounds for (IP) when the path-width of the corresponding column-matroid is a constant.
Given a graph $G=(V,E)$ with two distinguished vertices $s,tin V$ and an integer $L$, an {em $L$-bounded flow} is a flow between $s$ and $t$ that can be decomposed into paths of length at most $L$. In the {em maximum $L$-bounded flow problem} the tas
We present new lower bounds that show that a polynomial number of passes are necessary for solving some fundamental graph problems in the streaming model of computation. For instance, we show that any streaming algorithm that finds a weighted minimum
In this paper, we develop a simple and fast online algorithm for solving a class of binary integer linear programs (LPs) arisen in general resource allocation problem. The algorithm requires only one single pass through the input data and is free of
A long line of research on fixed parameter tractability of integer programming culminated with showing that integer programs with n variables and a constraint matrix with dual tree-depth d and largest entry D are solvable in time g(d,D)poly(n) for so
De Berg et al. in [SICOMP 2020] gave an algorithmic framework for subexponential algorithms on geometric graphs with tight (up to ETH) running times. This framework is based on dynamic programming on graphs of weighted treewidth resulting in algorith