ترغب بنشر مسار تعليمي؟ اضغط هنا

Polynomial Pass Lower Bounds for Graph Streaming Algorithms

91   0   0.0 ( 0 )
 نشر من قبل Sepehr Assadi
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

We present new lower bounds that show that a polynomial number of passes are necessary for solving some fundamental graph problems in the streaming model of computation. For instance, we show that any streaming algorithm that finds a weighted minimum $s$-$t$ cut in an $n$-vertex undirected graph requires $n^{2-o(1)}$ space unless it makes $n^{Omega(1)}$ passes over the stream. To prove our lower bounds, we introduce and analyze a new four-player communication problem that we refer to as the hidden-pointer chasing problem. This is a problem in spirit of the standard pointer chasing problem with the key difference that the pointers in this problem are hidden to players and finding each one of them requires solving another communication problem, namely the set intersection problem. Our lower bounds for graph problems are then obtained by reductions from the hidden-pointer chasing problem. Our hidden-pointer chasing problem appears flexible enough to find other applications and is therefore interesting in its own right. To showcase this, we further present an interesting application of this problem beyond streaming algorithms. Using a reduction from hidden-pointer chasing, we prove that any algorithm for submodular function minimization needs to make $n^{2-o(1)}$ value queries to the function unless it has a polynomial degree of adaptivity.



قيم البحث

اقرأ أيضاً

89 - Sepehr Assadi , Ran Raz 2020
We prove that any two-pass graph streaming algorithm for the $s$-$t$ reachability problem in $n$-vertex directed graphs requires near-quadratic space of $n^{2-o(1)}$ bits. As a corollary, we also obtain near-quadratic space lower bounds for several o ther fundamental problems including maximum bipartite matching and (approximate) shortest path in undirected graphs. Our results collectively imply that a wide range of graph problems admit essentially no non-trivial streaming algorithm even when two passes over the input is allowed. Prior to our work, such impossibility results were only known for single-pass streaming algorithms, and the best two-pass lower bounds only ruled out $o(n^{7/6})$ space algorithms, leaving open a large gap between (trivial) upper bounds and lower bounds.
We consider the problem of testing graph cluster structure: given access to a graph $G=(V, E)$, can we quickly determine whether the graph can be partitioned into a few clusters with good inner conductance, or is far from any such graph? This is a ge neralization of the well-studied problem of testing graph expansion, where one wants to distinguish between the graph having good expansion (i.e. being a good single cluster) and the graph having a sparse cut (i.e. being a union of at least two clusters). A recent work of Czumaj, Peng, and Sohler (STOC15) gave an ingenious sublinear time algorithm for testing $k$-clusterability in time $tilde{O}(n^{1/2} text{poly}(k))$: their algorithm implicitly embeds a random sample of vertices of the graph into Euclidean space, and then clusters the samples based on estimates of Euclidean distances between the points. This yields a very efficient testing algorithm, but only works if the cluster structure is very strong: it is necessary to assume that the gap between conductances of accepted and rejected graphs is at least logarithmic in the size of the graph $G$. In this paper we show how one can leverage more refined geometric information, namely angles as opposed to distances, to obtain a sublinear time tester that works even when the gap is a sufficiently large constant. Our tester is based on the singular value decomposition of a natural matrix derived from random walk transition probabilities from a small sample of seed nodes. We complement our algorithm with a matching lower bound on the query complexity of testing clusterability. Our lower bound is based on a novel property testing problem, which we analyze using Fourier analytic tools. As a byproduct of our techniques, we also achieve new lower bounds for the problem of approximating MAX-CUT value in sublinear time.
We study space-pass tradeoffs in graph streaming algorithms for parameter estimation and property testing problems such as estimating the size of maximum matchings and maximum cuts, weight of minimum spanning trees, or testing if a graph is connected or cycle-free versus being far from these properties. We develop a new lower bound technique that proves that for many problems of interest, including all the above, obtaining a $(1+epsilon)$-approximation requires either $n^{Omega(1)}$ space or $Omega(1/epsilon)$ passes, even on highly restricted families of graphs such as bounded-degree planar graphs. For multiple of these problems, this bound matches those of existing algorithms and is thus (asymptotically) optimal. Our results considerably strengthen prior lower bounds even for arbitrary graphs: starting from the influential work of [Verbin, Yu; SODA 2011], there has been a plethora of lower bounds for single-pass algorithms for these problems; however, the only multi-pass lower bounds proven very recently in [Assadi, Kol, Saxena, Yu; FOCS 2020] rules out sublinear-space algorithms with exponentially smaller $o(log{(1/epsilon)})$ passes for these problems. One key ingredient of our proofs is a simple streaming XOR Lemma, a generic hardness amplification result, that we prove: informally speaking, if a $p$-pass $s$-space streaming algorithm can only solve a decision problem with advantage $delta > 0$ over random guessing, then it cannot solve XOR of $ell$ independent copies of the problem with advantage much better than $delta^{ell}$. This result can be of independent interest and useful for other streaming lower bounds as well.
93 - Sepehr Assadi 2021
We prove a lower bound on the space complexity of two-pass semi-streaming algorithms that approximate the maximum matching problem. The lower bound is parameterized by the density of Ruzsa-Szemeredi graphs: * Any two-pass semi-streaming algorithm f or maximum matching has approximation ratio at least $(1- Omega(frac{log{RS(n)}}{log{n}}))$, where $RS(n)$ denotes the maximum number of induced matchings of size $Theta(n)$ in any $n$-vertex graph, i.e., the largest density of a Ruzsa-Szemeredi graph. Currently, it is known that $n^{Omega(1/!loglog{n})} leq RS(n) leq frac{n}{2^{O(log^*{!(n)})}}$ and closing this (large) gap between upper and lower bounds has remained a notoriously difficult problem in combinatorics. Under the plausible hypothesis that $RS(n) = n^{Omega(1)}$, our lower bound is the first to rule out small-constant approximation two-pass semi-streaming algorithms for the maximum matching problem, making progress on a longstanding open question in the graph streaming literature.
154 - Xin Li , Yu Zheng 2021
In this paper, we study edit distance (ED) and longest common subsequence (LCS) in the asymmetric streaming model, introduced by Saks and Seshadhri [SS13]. As an intermediate model between the random access model and the streaming model, this model a llows one to have streaming access to one string and random access to the other string. Our first main contribution is a systematic study of space lower bounds for ED and LCS in the asymmetric streaming model. Previously, there are no explicitly stated results in this context, although some lower bounds about LCS can be inferred from the lower bounds for longest increasing subsequence (LIS) in [SW07][GG10][EJ08]. Yet these bounds only work for large alphabet size. In this paper, we develop several new techniques to handle ED in general and LCS for small alphabet size, thus establishing strong lower bounds for both problems. In particular, our lower bound for ED provides an exponential separation between edit distance and Hamming distance in the asymmetric streaming model. Our lower bounds also extend to LIS and longest non-decreasing sequence (LNS) in the standard streaming model. Together with previous results, our bounds provide an almost complete picture for these two problems. As our second main contribution, we give improved algorithms for ED and LCS in the asymmetric streaming model. For ED, we improve the space complexity of the constant factor approximation algorithms in [FHRS20][CJLZ20] from $tilde{O}(frac{n^delta}{delta})$ to $O(frac{d^delta}{delta};mathsf{polylog}(n))$, where $n$ is the length of each string and $d$ is the edit distance between the two strings. For LCS, we give the first $1/2+epsilon$ approximation algorithm with space $n^{delta}$ for any constant $delta>0$, over a binary alphabet.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا