ترغب بنشر مسار تعليمي؟ اضغط هنا

Extracting Geography from Trade Data

66   0   0.0 ( 0 )
 نشر من قبل Stefan Steinerberger
 تاريخ النشر 2016
  مجال البحث مالية فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Understanding international trade is a fundamental problem in economics -- one standard approach is via what is commonly called the gravity equation, which predicts the total amount of trade $F_ij$ between two countries $i$ and $j$ as $$ F_{ij} = G frac{M_i M_j}{D_{ij}},$$ where $G$ is a constant, $M_i, M_j$ denote the economic mass (often simply the gross domestic product) and $D_{ij}$ the distance between countries $i$ and $j$, where distance is a complex notion that includes geographical, historical, linguistic and sociological components. We take the textit{inverse} route and ask ourselves to which extent it is possible to reconstruct meaningful information about countries simply from knowing the bilateral trade volumes $F_{ij}$: indeed, we show that a remarkable amount of geopolitical information can be extracted. The main tool is a spectral decomposition of the Graph Laplacian as a tool to perform nonlinear dimensionality reduction. This may have further applications in economic analysis and provides a data-based approach to trade distance.



قيم البحث

اقرأ أيضاً

Using non-linear machine learning methods and a proper backtest procedure, we critically examine the claim that Google Trends can predict future price returns. We first review the many potential biases that may influence backtests with this kind of d ata positively, the choice of keywords being by far the greatest culprit. We then argue that the real question is whether such data contain more predictability than price returns themselves: our backtest yields a performance of about 17bps per week which only weakly depends on the kind of data on which predictors are based, i.e. either past price returns or Google Trends data, or both.
We introduce a fully probabilistic framework of consumer product choice based on quality assessment. It allows us to capture many aspects of marketing such as partial information asymmetry, quality differentiation, and product placement in a supermarket.
Bilateral trade relationships in the international level between pairs of countries in the world give rise to the notion of the International Trade Network (ITN). This network has attracted the attention of network researchers as it serves as an exce llent example of the weighted networks, the link weight being defined as a measure of the volume of trade between two countries. In this paper we analyzed the international trade data for 53 years and studied in detail the variations of different network related quantities associated with the ITN. Our observation is that the ITN has also a scale invariant structure like many other real-world networks.
We studied non-dynamical stochastic resonance for the number of trades in the stock market. The trade arrival rate presents a deterministic pattern that can be modeled by a cosine function perturbed by noise. Due to the nonlinear relationship between the rate and the observed number of trades, the noise can either enhance or suppress the detection of the deterministic pattern. By finding the parameters of our model with intra-day data, we describe the trading environment and illustrate the presence of SR in the trade arrival rate of stocks in the U.S. market.
Tools of the theory of critical phenomena, namely the scaling analysis and universality, are argued to be applicable to large complex web-like network structures. Using a detailed analysis of the real data of the International Trade Network we argue that the scaled link weight distribution has an approximate log-normal distribution which remains robust over a period of 53 years. Another universal feature is observed in the power-law growth of the trade strength with gross domestic product, the exponent being similar for all countries. Using the rich-club coefficient measure of the weighted networks it has been shown that the size of the rich-club controlling half of the worlds trade is actually shrinking. While the gravity law is known to describe well the social interactions in the static networks of population migration, international trade, etc, here for the first time we studied a non-conservative dynamical model based on the gravity law which excellently reproduced many empirical features of the ITN.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا