ﻻ يوجد ملخص باللغة العربية
Many theories of dark matter (DM) predict that DM particles can be captured by stars via scattering on ordinary matter. They subsequently condense into a DM core close to the center of the star and eventually annihilate. In this work, we trace DM capture and annihilation rates throughout the life of a massive star and show that this evolution culminates in an intense annihilation burst coincident with the death of the star in a core collapse supernova. The reason is that, along with the stellar interior, also its DM core heats up and contracts, so that the DM density increases rapidly during the final stages of stellar evolution. We argue that, counterintuitively, the annihilation burst is more intense if DM annihilation is a $p$-wave process than for $s$-wave annihilation because in the former case, more DM particles survive until the supernova. If among the DM annihilation products are particles like dark photons that can escape the exploding star and decay to Standard Model particles later, the annihilation burst results in a flash of gamma rays accompanying the supernova. For a galactic supernova, this dark gamma ray burst may be observable in CTA.
The constancy of light speed is a basic assumption in Einsteins special relativity, and consequently the Lorentz invariance is a fundamental symmetry of space-time in modern physics. However, it is speculated that the speed of light becomes energy-de
We describe a characteristic signature of dark matter (DM) annihilation or decay into gamma-rays. We show that if the total angular momentum of the initial DM particle(s) vanishes, and helicity suppression operates to prevent annihilation/decay into
Compact dark matter has been efficiently constrained in the M <~ 10 M_sun mass range by null searches for microlensing of stars in nearby galaxies. Here we propose to probe the mass range M >~ 10 M_sun by seeking echoes in gamma-ray-burst light curve
The Fermi Gamma-ray Burst Monitor (GBM) has detected over 1400 Gamma-Ray Bursts (GRBs) since it began science operations in July, 2008. We use a subset of over 300 GRBs localized by instruments such as Swift, the Fermi Large Area Telescope, INTEGRAL,
It is shown that a decaying neutralino in a supergravity unified framework is a viable candidate for dark matter. Such a situation arises in the presence of a hidden sector with ultraweak couplings to the visible sector where the neutralino can decay