ﻻ يوجد ملخص باللغة العربية
It is shown that a decaying neutralino in a supergravity unified framework is a viable candidate for dark matter. Such a situation arises in the presence of a hidden sector with ultraweak couplings to the visible sector where the neutralino can decay into the hidden sectors lightest supersymmetric particle (LSP) with a lifetime larger than the lifetime of the universe. We present a concrete model where the MSSM/SUGRA is extended to include a hidden sector comprised of $U(1)_{X_1} times U(1)_{X_2}$ gauge sector and the LSP of the hidden sector is a neutralino which is lighter than the LSP neutralino of the visible sector. We compute the loop suppressed radiative decay of the visible sector neutralino into the neutralino of the hidden sector and show that the decay can occur with a lifetime larger than the age of the universe. The decaying neutralino can be probed by indirect detection experiments, specifically by its signature decay into the hidden sector neutralino and an energetic gamma ray photon. Such a gamma ray can be searched for with improved sensitivity at Fermi-LAT and by future experiments such as the Square Kilometer Array (SKA) and the Cherenkov Telescope Array (CTA). We present several benchmarks which have a natural suppression of the hadronic channels from dark matter annihilation and decays and consistent with measurements of the antiproton background.
Recently reported tentative evidence for a gamma-ray line in the Fermi-LAT data is of great potential interest for identifying the nature of dark matter. We compare the implications for decaying and annihilating dark matter taking the constraints fro
Utilizing the Fermi measurement of the gamma-ray spectrum toward the Galactic Center, we derive some of the strongest constraints to date on the dark matter (DM) lifetime in the mass range from hundreds of MeV to above an EeV. Our profile-likelihood
Among the several strategies for indirect searches of dark matter, one very promising one is to look for the gamma-rays from decaying dark matter. Here we use the most up-to-date upper bounds on the gamma-ray flux from $10^5$ to $10^{11}$ GeV, obtain
We consider axino warm dark matter in a supersymmetric axion model with R-parity violation. In this scenario, axino with the mass $m_axinosimeq 7$ keV can decay into photon and neutrino resulting in the X-ray line signal at $3.5$ keV, which might be
We study the possibility of improving the constraints on the lifetime of gravitino dark matter in scenarios with bilinear R-parity violation by estimating the amount of cosmic-ray antideuterons that can be produced in gravitino decays. Taking into ac