ﻻ يوجد ملخص باللغة العربية
The 6.67 hr periodicity and the variable X-ray flux of the central compact object (CCO) at the center of the SNR RCW 103, named 1E 161348-5055, have been always difficult to interpret within the standard scenarios of an isolated neutron star or a binary system. On 2016 June 22, the Burst Alert Telescope (BAT) onboard Swift detected a magnetar-like short X-ray burst from the direction of 1E 161348-5055, also coincident with a large long-term X-ray outburst. Here we report on Chandra, NuSTAR, and Swift (BAT and XRT) observations of this peculiar source during its 2016 outburst peak. In particular, we study the properties of this magnetar-like burst, we discover a hard X-ray tail in the CCO spectrum during outburst, and we study its long-term outburst history (from 1999 to July 2016). We find the emission properties of 1E 161348-5055 consistent with it being a magnetar. However in this scenario, the 6.67 hr periodicity can only be interpreted as the rotation period of this strongly magnetized neutron star, which therefore represents the slowest pulsar ever detected, by orders of magnitude. We briefly discuss the viable slow-down scenarios, favoring a picture involving a period of fall-back accretion after the supernova explosion, similarly to what is invoked (although in a different regime) to explain the anti-magnetar scenario for other CCOs.
Anomalous X-ray Pulsars and Soft-Gamma Repeaters groups are magnetar candidates featuring low characteristic ages ($tau = {Pover{2 {dot P}}}$). At least some of them they should still be associated with the remnants of the explosive events in which t
To examine the previously claimed fast cooling of the Central Compact Object (CCO) in the Cas A supernova remnant (SNR), we analyzed two Chandra observations of this CCO, taken in a setup minimizing instrumental spectral distortions. We fit the two C
Since its discovery as a pulsar in 2000, the central compact object (CCO) 1E 1207.4-5209 in the supernova remnant PKS 1209-51/52 had been a stable 0.424 s rotator with an extremely small spin-down rate and weak (Bs ~ 9E10 G) surface dipole magnetic f
We present 20 years of timing observations for 1E 1207.4-5209, the central compact object in supernova remnant PKS 1209-51/52, to follow up on our detection of an unexpected timing glitch in its spin-down. Using new XMM-Newton and NICER observations
The Central Compact Object (CCO) in the Cassiopeia A supernova remnant is most likely a very young ($approx 300$ yr) neutron star. If a previously reported decrease of its surface temperature by 4% in 10 years could be confirmed, it would have profou