ﻻ يوجد ملخص باللغة العربية
To examine the previously claimed fast cooling of the Central Compact Object (CCO) in the Cas A supernova remnant (SNR), we analyzed two Chandra observations of this CCO, taken in a setup minimizing instrumental spectral distortions. We fit the two CCO X-ray spectra from 2006 and 2012 with hydrogen and carbon neutron star atmosphere models. The temperature and flux changes in the 5.5 years between the two epochs depend on the adopted constraints on the fitting parameters and the uncertainties of the effective area calibrations. If we allow a change of the equivalent emitting region size, R_Em, the effective temperature remains essentially the same. If R_Em is held constant, the best-fit temperature change is negative, but its statistical significance ranges from 0.8sigma to 2.5sigma, depending on the model. If we assume that the optical depth of the ACIS filter contaminant in 2012 was +/-10% different from its default calibration value, the significance of the temperature drop becomes 0.8sigma to 3.1sigma, for the carbon atmospheres with constant R_Em. Thus, we do not see a statistically significant temperature drop in our data, but the involved uncertainties are too large to firmly exclude the previously reported fast cooling. Our analysis indicate a decrease of 4%-6% (1.9-2.9sigma significance) for the absorbed flux in the energy range 0.6-6keV between 2006 and 2012, most prominent in the 1.4-1.8 keV energy range. It could be caused by unaccounted changes of the detector response or contributions from unresolved SNR material along the line of sight to the CCO.
The Central Compact Object (CCO) in the Cassiopeia A supernova remnant is most likely a very young ($approx 300$ yr) neutron star. If a previously reported decrease of its surface temperature by 4% in 10 years could be confirmed, it would have profou
We have analyzed the archival Chandra X-ray Observatory observations of the compact feature in the Small Magellanic Cloud supernova remnant (SNR) 1E 0102.2-7219 which has recently been suggested to be the Central Compact Object remaining after the su
Since its discovery as a pulsar in 2000, the central compact object (CCO) 1E 1207.4-5209 in the supernova remnant PKS 1209-51/52 had been a stable 0.424 s rotator with an extremely small spin-down rate and weak (Bs ~ 9E10 G) surface dipole magnetic f
The 6.67 hr periodicity and the variable X-ray flux of the central compact object (CCO) at the center of the SNR RCW 103, named 1E 161348-5055, have been always difficult to interpret within the standard scenarios of an isolated neutron star or a bin
We present analysis of multiple Chandra and XMM-Newton spectra, separated by 9-19 years, of four of the youngest central compact objects (CCOs) with ages < 2500 yr: CXOU J232327.9+584842 (Cassiopeia A), CXOU J160103.1-513353 (G330.2+1.0), 1WGA J1713.