ترغب بنشر مسار تعليمي؟ اضغط هنا

Foliated Quantum Codes

67   0   0.0 ( 0 )
 نشر من قبل Tom Stace
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We show how to construct a large class of quantum error correcting codes, known as CSS codes, from highly entangled cluster states. This becomes a primitive in a protocol that foliates a series of such cluster states into a much larger cluster state, implementing foliated quantum error correction. We exemplify this construction with several familiar quantum error correction codes, and propose a generic method for decoding foliated codes. We numerically evaluate the error-correction performance of a family of finite-rate CSS codes known as turbo codes, finding that it performs well over moderate depth foliations. Foliated codes have applications for quantum repeaters and fault-tolerant measurement-based quantum computation.



قيم البحث

اقرأ أيضاً

70 - A. Bolt , D. Poulin , 2018
Foliated quantum codes are a resource for fault-tolerant measurement-based quantum error correction for quantum repeaters and for quantum computation. They represent a general approach to integrating a range of possible quantum error correcting codes into larger fault-tolerant networks. Here we present an efficient heuristic decoding scheme for foliated quantum codes, based on message passing between primal and dual code sheets. We test this decoder on two different families of sparse quantum error correcting code: turbo codes and bicycle codes, and show reasonably high numerical performance thresholds. We also present a construction schedule for building such code states.
118 - Jop Briet 2008
We study a quantum analogue of locally decodable error-correcting codes. A q-query locally decodable quantum code encodes n classical bits in an m-qubit state, in such a way that each of the encoded bits can be recovered with high probability by a me asurement on at most q qubits of the quantum code, even if a constant fraction of its qubits have been corrupted adversarially. We show that such a quantum code can be transformed into a classical q-query locally decodable code of the same length that can be decoded well on average (albeit with smaller success probability and noise-tolerance). This shows, roughly speaking, that q-query quantum codes are not significantly better than q-query classical codes, at least for constant or small q.
We introduce the concept of generalized concatenated quantum codes. This generalized concatenation method provides a systematical way for constructing good quantum codes, both stabilizer codes and nonadditive codes. Using this method, we construct fa milies of new single-error-correcting nonadditive quantum codes, in both binary and nonbinary cases, which not only outperform any stabilizer codes for finite block length, but also asymptotically achieve the quantum Hamming bound for large block length.
We study a three-fold variant of the hypergraph product code construction, differing from the standard homological product of three classical codes. When instantiated with 3 classical LDPC codes, this XYZ product yields a non CSS quantum LDPC code wh ich might display a large minimum distance. The simplest instance of this construction, corresponding to the product of 3 repetition codes, is a non CSS variant of the 3-dimensional toric code known as the Chamon code. The general construction was introduced in Maurices PhD thesis, but has remained poorly understood so far. The reason is that while hypergraph product codes can be analyzed with combinatorial tools, the XYZ product codes depend crucially on the algebraic properties of the parity-check matrices of the three classical codes, making their analysis much more involved. Our main motivation for studying XYZ product codes is that the natural representatives of logical operators are two-dimensional objects. This contrasts with standard hypergraph product codes in 3 dimensions which always admit one-dimensional logical operators. In particular, specific instances of XYZ product codes might display a minimum distance as large as $Theta(N^{2/3})$ which would beat the current record for the minimum distance of quantum LDPC codes held by fiber bundle codes. While we do not prove this result here, we obtain the dimension of a large class of XYZ product codes, and when restricting to codes with dimension 1, we reduce the problem of computing the minimum distance to a more elementary combinatorial problem involving binary 3-tensors. We also discuss in detail some families of XYZ product codes in three dimensions with local interaction. Some of these codes seem to share properties with Haahs cubic codes and might be interesting candidates for self-correcting quantum memories with a logarithmic energy barrier.
98 - Markus Grassl 2003
We present families of quantum error-correcting codes which are optimal in the sense that the minimum distance is maximal. These maximum distance separable (MDS) codes are defined over q-dimensional quantum systems, where q is an arbitrary prime powe r. It is shown that codes with parameters [[n,n-2d+2,d]]_q exist for all 3 <= n <= q and 1 <= d <= n/2+1. We also present quantum MDS codes with parameters [[q^2,q^2-2d+2,d]]_q for 1 <= d <= q which additionally give rise to shortened codes [[q^2-s,q^2-2d+2-s,d]]_q for some s.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا