ﻻ يوجد ملخص باللغة العربية
We study the bulk-edge correspondence in topological insulators by taking Fu-Kane spin pumping model as an example. We show that the Kane-Mele invariant in this model is Z2 invariant modulo the spectral flow of a single-parameter family of 1+1-dimensional Dirac operators with a global boundary condition induced by the Kramers degeneracy of the system. This spectral flow is defined as an integer which counts the difference between the number of eigenvalues of the Dirac operator family that flow from negative to non-negative and the number of eigenvalues that flow from non-negative to negative. Since the bulk states of the insulator are completely gapped and the ground state is assumed being no more degenerate except the Kramers, they do not contribute to the spectral flow and only edge states contribute to. The parity of the number of the Kramers pairs of gapless edge states is exactly the same as that of the spectral flow. This reveals the origin of the edge-bulk correspondence, i.e., why the edge states can be used to characterize the topological insulators. Furthermore, the spectral flow is related to the reduced eta-invariant and thus counts both the discrete ground state degeneracy and the continuous gapless excitations, which distinguishes the topological insulator from the conventional band insulator even if the edge states open a gap due to a strong interaction between edge modes. We emphasize that these results are also valid even for a weak disordered and/or weak interacting system. The higher spectral flow to categorize the higher-dimensional topological insulators are expected.
We investigate an extension of ideas of Atiyah-Patodi-Singer (APS) to a noncommutative geometry setting framed in terms of Kasparov modules. We use a mapping cone construction to relate odd index pairings to even index pairings with APS boundary cond
We present an exact solution of a modifed Dirac equation for topological insulator in the presence of a hole or vacancy to demonstrate that vacancies may induce bound states in the band gap of topological insulators. They arise due to the Z_2 classif
We propose a non-perturbative formulation of the Atiyah-Patodi-Singer(APS) index in lattice gauge theory, in which the index is given by the $eta$ invariant of the domain-wall Dirac operator. Our definition of the index is always an integer with a fi
The bulk-edge correspondence (BEC) refers to a one-to-one relation between the bulk and edge properties ubiquitous in topologically nontrivial systems. Depending on the setup, BEC manifests in different forms and govern the spectral and transport pro
The bulk-boundary correspondence is a generic feature of topological states of matter, reflecting the intrinsic relation between topological bulk and boundary states. For example, robust edge states propagate along the edges and corner states gather