ﻻ يوجد ملخص باللغة العربية
We present an exact solution of a modifed Dirac equation for topological insulator in the presence of a hole or vacancy to demonstrate that vacancies may induce bound states in the band gap of topological insulators. They arise due to the Z_2 classification of time-reversal invariant insulators, thus are also topologically-protected like the edge states in the quantum spin Hall effect and the surface states in three-dimensional topological insulators. Coexistence of the in-gap bound states and the edge or surface states in topological insulators suggests that imperfections may affect transport properties of topological insulators via additional bound states near the system boundary.
We consider a three-dimensional topological insulator (TI) wire with a non-uniform chemical potential induced by gating across the cross-section. This inhomogeneity in chemical potential lifts the degeneracy between two one-dimensional surface state
We study the bulk-edge correspondence in topological insulators by taking Fu-Kane spin pumping model as an example. We show that the Kane-Mele invariant in this model is Z2 invariant modulo the spectral flow of a single-parameter family of 1+1-dimens
It has been known that an anti-unitary symmetry such as time-reversal or charge conjugation is needed to realize Z2 topological phases in non-interacting systems. Topological insulators and superconducting nanowires are representative examples of suc
Recent magnetoconductance measurements performed on magnetic topological insulator candidates have revealed butterfly-shaped hysteresis. This hysteresis has been attributed to the formation of gapless chiral domain-wall bound states during a magnetic
The bulk-boundary correspondence, which links a bulk topological property of a material to the existence of robust boundary states, is a hallmark of topological insulators. However, in crystalline topological materials the presence of boundary states