ترغب بنشر مسار تعليمي؟ اضغط هنا

Z2 invariant protected bound states in topological insulators

139   0   0.0 ( 0 )
 نشر من قبل Shun-Qing Shen
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present an exact solution of a modifed Dirac equation for topological insulator in the presence of a hole or vacancy to demonstrate that vacancies may induce bound states in the band gap of topological insulators. They arise due to the Z_2 classification of time-reversal invariant insulators, thus are also topologically-protected like the edge states in the quantum spin Hall effect and the surface states in three-dimensional topological insulators. Coexistence of the in-gap bound states and the edge or surface states in topological insulators suggests that imperfections may affect transport properties of topological insulators via additional bound states near the system boundary.



قيم البحث

اقرأ أيضاً

We consider a three-dimensional topological insulator (TI) wire with a non-uniform chemical potential induced by gating across the cross-section. This inhomogeneity in chemical potential lifts the degeneracy between two one-dimensional surface state subbands. A magnetic field applied along the wire, due to orbital effects, breaks time-reversal symmetry and lifts the Kramers degeneracy at zero-momentum. If placed in proximity to an $s$-wave superconductor, the system can be brought into a topological phase at relatively weak magnetic fields. Majorana bound states (MBSs), localized at the ends of the TI wire, emerge and are present for an exceptionally large region of parameter space in realistic systems. Unlike in previous proposals, these MBSs occur without the requirement of a vortex in the superconducting pairing potential, which represents a significant simplification for experiments. Our results open a pathway to the realisation of MBSs in present day TI wire devices.
We study the bulk-edge correspondence in topological insulators by taking Fu-Kane spin pumping model as an example. We show that the Kane-Mele invariant in this model is Z2 invariant modulo the spectral flow of a single-parameter family of 1+1-dimens ional Dirac operators with a global boundary condition induced by the Kramers degeneracy of the system. This spectral flow is defined as an integer which counts the difference between the number of eigenvalues of the Dirac operator family that flow from negative to non-negative and the number of eigenvalues that flow from non-negative to negative. Since the bulk states of the insulator are completely gapped and the ground state is assumed being no more degenerate except the Kramers, they do not contribute to the spectral flow and only edge states contribute to. The parity of the number of the Kramers pairs of gapless edge states is exactly the same as that of the spectral flow. This reveals the origin of the edge-bulk correspondence, i.e., why the edge states can be used to characterize the topological insulators. Furthermore, the spectral flow is related to the reduced eta-invariant and thus counts both the discrete ground state degeneracy and the continuous gapless excitations, which distinguishes the topological insulator from the conventional band insulator even if the edge states open a gap due to a strong interaction between edge modes. We emphasize that these results are also valid even for a weak disordered and/or weak interacting system. The higher spectral flow to categorize the higher-dimensional topological insulators are expected.
It has been known that an anti-unitary symmetry such as time-reversal or charge conjugation is needed to realize Z2 topological phases in non-interacting systems. Topological insulators and superconducting nanowires are representative examples of suc h Z2 topological matters. Here we report the first-known Z2 topological phase protected by only unitary symmetries. We show that the presence of a nonsymmorphic space group symmetry opens a possibility to realize Z2 topological phases without assuming any anti-unitary symmetry. The Z2 topological phases are constructed in various dimensions, which are closely related to each other by Hamiltonian mapping. In two and three dimensions, the Z2 phases have a surface consistent with the nonsymmorphic space group symmetry, and thus they support topological gapless surface states. Remarkably, the surface states have a unique energy dispersion with the Mobius twist, which identifies the Z2 phases experimentally. We also provide the relevant structure in the K-theory.
Recent magnetoconductance measurements performed on magnetic topological insulator candidates have revealed butterfly-shaped hysteresis. This hysteresis has been attributed to the formation of gapless chiral domain-wall bound states during a magnetic field sweep. We treat this phenomenon theoretically, providing a link between microscopic magnetization dynamics and butterfly hysteresis in magnetoconductance. Further, we illustrate how a spatially resolved conductance measurement can probe the most striking feature of the domain-wall bound states: their chirality. This work establishes a regime where a definitive link between butterfly hysteresis in longitudinal magneto-conductance and domain-wall bound states can be made. This analysis provides an important tool for the identification of magnetic topological insulators.
The bulk-boundary correspondence, which links a bulk topological property of a material to the existence of robust boundary states, is a hallmark of topological insulators. However, in crystalline topological materials the presence of boundary states in the insulating gap is not always necessary since they can be hidden in the bulk energy bands, obscured by boundary artifacts of non-topological origin, or, in the case of higher-order topology, they can be gapped altogether. Crucially, in such systems the interplay between symmetry-protected topology and the corresponding symmetry defects can provide a variety of bulk probes to reveal their topological nature. For example, bulk crystallographic defects, such as disclinations and dislocations, have been shown to bind fractional charges and/or robust localized bound states in insulators protected by crystalline symmetries. Recently, exotic defects of translation symmetry called partial dislocations have been proposed as a probe of higher-order topology. However, it is a herculean task to have experimental control over the generation and probing of isolated defects in solid-state systems; hence their use as a bulk probe of topology faces many challenges. Instead, here we show that partial dislocation probes of higher-order topology are ideally suited to the context of engineered materials. Indeed, we present the first observations of partial-dislocation-induced topological modes in 2D and 3D higher-order topological insulators built from circuit-based resonator arrays. While rotational defects (disclinations) have previously been shown to indicate higher-order topology, our work provides the first experimental evidence that exotic translation defects (partial dislocations) are bulk topological probes.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا