ترغب بنشر مسار تعليمي؟ اضغط هنا

Introduction of spin-orbit interaction into graphene with hydrogenation

74   0   0.0 ( 0 )
 نشر من قبل Taketomo Nakamura
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Introduction of spin-orbit interaction (SOI) into graphene with weak hydrogenation ($sim$0.1%) by dissociation of hydrogen silsesquioxane resist has been confirmed through the appearance of inverse spin Hall effect. The spin current was produced by spin injection from permalloy electrodes excluding non-spin relating experimental artifact.



قيم البحث

اقرأ أيضاً

The concept of gauge fields plays a significant role in many areas of physics from particle physics and cosmology to condensed matter systems, where gauge potentials are a natural consequence of electromagnetic fields acting on charged particles and are of central importance in topological states of matter. Here, we report on the experimental realization of a synthetic non-Abelian gauge field for photons in a honeycomb microcavity lattice. We show that the effective magnetic field associated with TE-TM splitting has the symmetry of Dresselhaus spin-orbit interaction around Dirac points in the dispersion, and can be regarded as an SU(2) gauge field. The symmetry of the field is revealed in the optical spin Hall effect (OSHE), where under resonant excitation of the Dirac points precession of the photon pseudospin around the field direction leads to the formation of two spin domains. Furthermore, we observe that the Dresselhaus field changes its sign in the same Dirac valley on switching from s to p bands in good agreement with the tight binding modelling. Our work demonstrating a non-Abelian gauge field for light on the microscale paves the way towards manipulation of photons via spin on a chip.
We report a systematic study on strong enhancement of spin-orbit interaction (SOI) in graphene driven by transition-metal dichalcogenides (TMDs). Low temperature magnetotoransport measurements of graphene proximitized to different TMDs (monolayer and bulk WSe$_2$, WS$_2$ and monolayer MoS$_2$) all exhibit weak antilocalization peaks, a signature of strong SOI induced in graphene. The amplitudes of the induced SOI are different for different materials and thickness, and we find that monolayer WSe$_2$ and WS$_2$ can induce much stronger SOI than bulk ones and also monolayer MoS$_2$. The estimated spin-orbit (SO) scattering strength for the former reaches $sim$ 10 meV whereas for the latter it is around 1 meV or less. We also discuss the symmetry and type of the induced SOI in detail, especially focusing on the identification of intrinsic and valley-Zeeman (VZ) SOI via the dominant spin relaxation mechanism. Our findings offer insight on the possible realization of the quantum spin Hall (QSH) state in graphene.
We study interfaces between graphene and graphane. If the interface is oriented along a zigzag direction, edge states are found which exhibit a strong amplification of effects related to the spin-orbit interaction. The enhanced spin splitting of the edge states allows a conversion between valley polarization and spin polarization at temperatures near one Kelvin. We show that these edge states give rise to quantum spin and/or valley Hall effects.
We study a model of a $p$-$n$ junction in single-layer graphene in the presence of a perpendicular magnetic field and spin-orbit interactions. By solving the relevant quantum-mechanical problem for a potential step, we determine the exact spectrum of spin-resolved dispersive Landau levels. Close to zero energy, we find a pair of linearly dispersing zero modes, which possess a wave-vector-dependent spin polarization and can be regarded as quantum analogous of spinful snake states. We show that the Rashba spin-orbit interaction, in particular, produces a wave vector shift between the dispersions of these modes with observable interference effects. These effects can in principle provide a way to detect the presence of Rashba spin-orbit interaction and measure its strength. Our results suggest that a graphene $p$-$n$ junction in the presence of strong spin-orbit interaction could be used as a building block in a spin field-effect transistor.
A new type of blockade effect - spin-orbit blockade (SOB) - is found in the conduction of a quantum dot (QD) made of a material with spin-orbit interaction. The blockade arises from spin-filtering effect in a quantum point contact (QPC), which is a c omponent of the QD. Hence the appearance of the blockade itself evidences the spin-filtering effect in the QPC. The lower bound of filtering efficiency is estimated to be above 80%.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا