ﻻ يوجد ملخص باللغة العربية
The cohomology of the degree-$n$ general linear group over a finite field of characteristic $p$, with coefficients also in characteristic $p$, remains poorly understood. For example, the lowest degree previously known to contain nontrivial elements is exponential in $n$. In this paper, we introduce a new system of characteristic classes for representations over finite fields, and use it to construct a wealth of explicit nontrivial elements in these cohomology groups. In particular we obtain nontrivial elements in degrees linear in $n$. We also construct nontrivial elements in the mod $p$ homology and cohomology of the automorphism groups of free groups, and the general linear groups over the integers. These elements reside in the unstable range where the homology and cohomology remain poorly understood.
It is conjectured by Adams-Vogan and Prasad that under the local Langlands correspondence, the L-parameter of the contragredient representation equals that of the original representation composed with the Chevalley involution of the L-group. We verif
Let $mathbb{F}_{p^{n}}$ be the finite field with $p^n$ elements and $operatorname{Tr}(cdot)$ be the trace function from $mathbb{F}_{p^{n}}$ to $mathbb{F}_{p}$, where $p$ is a prime and $n$ is an integer. Inspired by the works of Mesnager (IEEE Trans.
In this paper, we study Heisenberg vertex algebras over fields of prime characteristic. The new feature is that the Heisenberg vertex algebras are no longer simple unlike in the case of characteristic zero. We then study a family of simple quotient v
In this paper, we present three classes of complete permutation monomials over finite fields of odd characteristic. Meanwhile, the compositional inverses of these complete permutation polynomials are also proposed.
Let $G$ be a Lie group and $GtoAut(G)$ be the canonical group homomorphism induced by the adjoint action of a group on itself. We give an explicit description of a 1-1 correspondence between Morita equivalence classes of, on the one hand, principal 2