ﻻ يوجد ملخص باللغة العربية
In this paper, we study Heisenberg vertex algebras over fields of prime characteristic. The new feature is that the Heisenberg vertex algebras are no longer simple unlike in the case of characteristic zero. We then study a family of simple quotient vertex algebras and we show that for each such simple quotient vertex algebra, irreducible modules are unique up to isomorphism and every module is completely reducible. To achieve our goal, we also establish a complete reducibility theorem for a certain category of modules over Heisenberg algebras.
It is conjectured by Adams-Vogan and Prasad that under the local Langlands correspondence, the L-parameter of the contragredient representation equals that of the original representation composed with the Chevalley involution of the L-group. We verif
The cohomology of the degree-$n$ general linear group over a finite field of characteristic $p$, with coefficients also in characteristic $p$, remains poorly understood. For example, the lowest degree previously known to contain nontrivial elements i
We prove most of Lusztigs conjectures from the paper Bases in equivariant K-theory II, including the existence of a canonical basis in the Grothendieck group of a Springer fiber. The conjectures also predict that this basis controls numerics of repre
In this paper, we prove some extensions of recent results given by Shkredov and Shparlinski on multiple character sums for some general families of polynomials over prime fields. The energies of polynomials in two and three variables are our main ingredients.
We describe examples motivated by the work of Serre and Abhyankar.