ترغب بنشر مسار تعليمي؟ اضغط هنا

Theoretical benchmarking of laser-accelerated ion fluxes by 2D-PIC simulations

292   0   0.0 ( 0 )
 نشر من قبل Felix Mackenroth
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

There currently exists a number of different schemes for laser based ion acceleration in the literature. Some of these schemes are also partly overlapping, making a clear distinction between the schemes difficult in certain parameter regimes. Here, we provide a systematic numerical comparison between the following schemes and their analytical models: light-sail acceleration, Coulomb explosions, hole boring acceleration, and target normal sheath acceleration (TNSA). We study realistic laser parameters and various different target designs, each optimized for one of the acceleration schemes, respectively. As a means of comparing the schemes, we compute the ion current density generated at different laser powers, using two-dimensional particle-in-cell (PIC) simulations, and benchmark the particular analytical models for the corresponding schemes against the numerical results. Finally, we discuss the consequences for attaining high fluxes through the studied laser ion-acceleration schemes.



قيم البحث

اقرأ أيضاً

Rapidly growing numerical instabilities routinely occur in multidimensional particle-in-cell computer simulations of plasma-based particle accelerators, astrophysical phenomena, and relativistic charged particle beams. Reducing instability growth to acceptable levels has necessitated higher resolution grids, high-order field solvers, current filtering, etc. except for certain ratios of the time step to the axial cell size, for which numerical growth rates and saturation levels are reduced substantially. This paper derives and solves the cold beam dispersion relation for numerical instabilities in multidimensional, relativistic, electromagnetic particle-in-cell programs employing either the standard or the Cole-Karkkainnen finite difference field solver on a staggered mesh and the common Esirkepov current-gathering algorithm. Good overall agreement is achieved with previously reported results of the WARP code. In particular, the existence of select time steps for which instabilities are minimized is explained. Additionally, an alternative field interpolation algorithm is proposed for which instabilities are almost completely eliminated for a particular time step in ultra-relativistic simulations.
At the laser acceleration of self-injected electron bunch by plasma wakefield it is important to form bunch with small energy spread and small size. It has been shown that laser-pulse shaping on radius, intensity and shape controls characteristics of the self-injected electron bunch and provides at certain shaping small energy spread and small size of self-injected and accelerated electron bunch.
446 - H. C. Wang , S. M. Weng , M. Liu 2018
The ion beam bunching in a cascaded target normal sheath acceleration is investigated by theoretical analysis and particle-in-cell simulations. It is found that a proton beam can be accelerated and bunched simultaneously by injecting it into the risi ng sheath field at the rear side of a laser-irradiated foil target. In the rising sheath field, the ion phase rotation may take place since the back-end protons of the beam feels a stronger field than the front-end protons. Consequently, the injected proton beam can be compressed in the longitudinal direction. At last, the vital role of the ion beam bunching is illustrated by the integrated simulations of two successive stages in a cascaded acceleration.
127 - T. Nakamura , Y. Fukuda , A. Yogo 2008
Coulomb implosion mechanism of the negatively charged ion acceleration in laser plasmas is proposed. When a cluster target is irradiated by an intense laser pulse and the Coulomb explosion of positively charged ions occurs, the negative ions are acce lerated inward. The maximum energy of negative ions is several times lower than that of positive ions. The theoretical description and Particle-in-Cell simulation of the Coulomb implosion mechanism and the evidence of the negative ion acceleration in the experiments on the high intensity laser pulse interaction with the cluster targets are presented.
Magnetic Vortex Acceleration (MVA) from near critical density targets is one of the promising schemes of laser-driven ion acceleration. 3D particle-in-cell simulations are used to explore a more extensive laser-target parameter space than previously reported on in the literature as well as to study the laser pulse coupling to the target, the structure of the fields, and the properties of the accelerated ion beam in the MVA scheme. The efficiency of acceleration depends on the coupling of the laser energy to the self-generated channel in the target. The accelerated proton beams demonstrate high level of collimation with achromatic angular divergence, and carry a significant amount of charge. For PW-class lasers, this acceleration regime provides favorable scaling of maximum ion energy with laser power for optimized interaction parameters. The mega Tesla-level magnetic fields generated by the laser-driven co-axial plasma structure in the target are prerequisite for accelerating protons to the energy of several hundred MeV.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا