ﻻ يوجد ملخص باللغة العربية
We consider the problem of approximate joint triangularization of a set of noisy jointly diagonalizable real matrices. Approximate joint triangularizers are commonly used in the estimation of the joint eigenstructure of a set of matrices, with applications in signal processing, linear algebra, and tensor decomposition. By assuming the input matrices to be perturbations of noise-free, simultaneously diagonalizable ground-truth matrices, the approximate joint triangularizers are expected to be perturbations of the exact joint triangularizers of the ground-truth matrices. We provide a priori and a posteriori perturbation bounds on the `distance between an approximate joint triangularizer and its exact counterpart. The a priori bounds are theoretical inequalities that involve functions of the ground-truth matrices and noise matrices, whereas the a posteriori bounds are given in terms of observable quantities that can be computed from the input matrices. From a practical perspective, the problem of finding the best approximate joint triangularizer of a set of noisy matrices amounts to solving a nonconvex optimization problem. We show that, under a condition on the noise level of the input matrices, it is possible to find a good initial triangularizer such that the solution obtained by any local descent-type algorithm has certain global guarantees. Finally, we discuss the application of approximate joint matrix triangularization to canonical tensor decomposition and we derive novel estimation error bounds.
Matrix computations, especially iterative PDE solving (and the sparse matrix vector multiplication subproblem within) using conjugate gradient algorithm, and LU/Cholesky decomposition for solving system of linear equations, form the kernel of many ap
The problem of transmitting a common message to multiple users over the Gaussian multiple-input multiple-output broadcast channel is considered, where each user is equipped with an arbitrary number of antennas. A closed-loop scenario is assumed, for
Composite function minimization captures a wide spectrum of applications in both computer vision and machine learning. It includes bound constrained optimization, $ell_1$ norm regularized optimization, and $ell_0$ norm regularized optimization as spe
In this paper, we present several descent methods that can be applied to nonnegative matrix factorization and we analyze a recently developped fast block coordinate method called Rank-one Residue Iteration (RRI). We also give a comparison of these di
Nonnegative matrix factorization (NMF) has become a prominent technique for the analysis of image databases, text databases and other information retrieval and clustering applications. In this report, we define an exact version of NMF. Then we establ