ﻻ يوجد ملخص باللغة العربية
Matrix computations, especially iterative PDE solving (and the sparse matrix vector multiplication subproblem within) using conjugate gradient algorithm, and LU/Cholesky decomposition for solving system of linear equations, form the kernel of many applications, such as circuit simulators, computational fluid dynamics or structural analysis etc. The problem of designing approaches for parallelizing these computations, to get good speedups as much as possible as per Amdahls law, has been continuously researched upon. In this paper, we discuss approaches based on the use of finite projective geometry graphs for these two problems. For the problem of conjugate gradient algorithm, the approach looks at an alternative data distribution based on projective-geometry concepts. It is proved that this data distribution is an optimal data distribution for scheduling the main problem of dense matrix-vector multiplication. For the problem of parallel LU/Cholesky decomposition of general matrices, the approach is motivated by the recently published scheme for interconnects of distributed systems, perfect difference networks. We find that projective-geometry based graphs indeed offer an exciting way of parallelizing these computations, and in fact many others. Moreover, their applications ranges from architectural ones (interconnect choice) to algorithmic ones (data distributions).
The paper presents a combination of the time-parallel parallel full approximation scheme in space and time (PFASST) with a parallel multigrid method (PMG) in space, resulting in a mesh-based solver for the three-dimensional heat equation with a uniqu
As parallel computing trends towards the exascale, scientific data produced by high-fidelity simulations are growing increasingly massive. For instance, a simulation on a three-dimensional spatial grid with 512 points per dimension that tracks 64 var
We consider the problem of approximate joint triangularization of a set of noisy jointly diagonalizable real matrices. Approximate joint triangularizers are commonly used in the estimation of the joint eigenstructure of a set of matrices, with applic
We present CYCLADES, a general framework for parallelizing stochastic optimization algorithms in a shared memory setting. CYCLADES is asynchronous during shared model updates, and requires no memory locking mechanisms, similar to HOGWILD!-type algori
This paper considers the modeling and the analysis of the performance of lock-free concurrent data structures. Lock-free designs employ an optimistic conflict control mechanism, allowing several processes to access the shared data object at the same