ﻻ يوجد ملخص باللغة العربية
We analyze an AC-driven dimer chain connected to a strongly biased electron source and drain. It turns out that the resulting transport exhibits fingerprints of topology. They are particularly visible in the driving-induced current suppression and the Fano factor. Thus, shot noise measurements provide a topological phase diagram as a function of the driving parameters. The observed phenomena can be explained physically by a mapping to an effective time-independent Hamiltonian and the emergence of edge states. Moreover, by considering quantum dissipation, we determine the requirements for the coherence properties in a possible experimental realization. For the computation of the zero-frequency noise, we develop an efficient method based on matrix-continued fractions.
Consider two Fermi gases with the same {it average} currents: a transport gas, as in solid-state experiments where the chemical potentials of terminal 1 is $mu+eV$ and of terminal 2 and 3 is $mu$, and a beam, i.e., electrons entering only from termin
(Dated: July 17, 2017) We calculate the electric charge current flowing through a vibrating molecular nanojunction, which is driven by an ac voltage, in its regime of nonlinear oscillations. Without loss of generality, we model the junction by a vibr
A topologically equivalent tight binding model is proposed to study the quantum phase transitions of dimer chain driven by an imaginary ac field. I demonstrate how the partner Hamiltonian is constructed by a similarity transformation to fulfil the $m
The non-symmetrized current noise is crucial for the analysis of light emission in nanojunctions. The latter represent non-classical photon emitters whose description requires a full quantum approach. It was found experimentally that light emission c
We report measurements of current noise in single- and multi-layer graphene devices. In four single-layer devices, including a p-n junction, the Fano factor remains constant to within +/-10% upon varying carrier type and density, and averages between