ﻻ يوجد ملخص باللغة العربية
We present the first results from an on-going survey to characterize the circumgalactic medium (CGM) of the massive high-redshift galaxies detected as submillimeter galaxies (SMGs). We constructed a parent sample of 163 SMG-QSO pairs with separations less than $sim$36 arcsec by cross-matching far-infrared-selected galaxies from Herschel with spectroscopically confirmed QSOs. The Herschel sources were selected to match the properties of SMGs. We determined the sub-arcsecond positions of six Herschel sources with the Very Large Array and obtained secure redshift identification for three of those with near-infrared spectroscopy. The QSO sightlines probe transverse proper distances of 112, 157, and 198 kpc at foreground redshifts of 2.043, 2.515, and 2.184, respectively, which are comparable to the virial radius of the $sim10^{13}$ Msun halos expected to host SMGs. High-quality absorption-line spectroscopy of the QSOs reveals systematically strong HI Lyman-alpha absorption around all three SMGs, with rest-frame equivalent widths of $sim2-3$ AA. However, none of the three absorbers exhibits compelling evidence for optically thick HI gas or metal absorption, in contrast to the dominance of strong neutral absorbers in the CGM of luminous $z sim 2$ QSOs. The low covering factor of optically thick HI gas around SMGs tentatively indicates that SMGs may not have as prominent cool gas reservoirs in their halos as the co-eval QSOs and that they may inhabit less massive halos than previously thought.
We present a study exploring the nature and properties of the Circum-Galactic Medium (CGM) and its connection to the atomic gas content in the interstellar medium (ISM) of galaxies as traced by the HI 21cm line. Our sample includes 45 low-z (0.026-0.
Spectroscopy of background QSO sightlines passing close to foreground galaxies is a potent technique for studying the circumgalactic medium (CGM). QSOs are effectively point sources, however, limiting their potential to constrain the size of circumga
We use the combined data from the COS-GASS and COS-Halos surveys to characterize the Circum-Galactic Medium (CGM) surrounding typical low-redshift galaxies in the mass range $rm~M_*sim~10^{9.5-11.5}~M_{odot} $, and over a range of impact parameters e
The circumgalactic medium (CGM), which harbors > 50% of all the baryons in a galaxy, is both the reservoir of gas for subsequent star formation and the depository of chemically processed gas, energy, and angular momentum from feedback. As such, the C
Galaxies are surrounded by extended atmospheres, which are often called the circumgalactic medium (CGM) and are the least understood part of galactic ecosystems. The CGM serves as a reservoir of both diffuse, metal-poor gas accreted from the intergal