ترغب بنشر مسار تعليمي؟ اضغط هنا

Emission Line Mapping of the Circumgalactic Medium of Nearby Galaxies

134   0   0.0 ( 0 )
 نشر من قبل Dennis Zaritsky
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The circumgalactic medium (CGM), which harbors > 50% of all the baryons in a galaxy, is both the reservoir of gas for subsequent star formation and the depository of chemically processed gas, energy, and angular momentum from feedback. As such, the CGM obviously plays a critical role in galaxy evolution. We discuss the opportunity to image this component using recombination line emission, beginning with the early results coming from recent statistical detection of this emission to the final goal of realizing spectral-line images of the CGM in individual nearby galaxies. Such work will happen in the next decade and provide new insights on the galactic baryon cycle.



قيم البحث

اقرأ أيضاً

The circumgalactic medium (CGM) remains one of the least constrained components of galaxies and as such has significant potential for advancing galaxy formation theories. In this work, we vary the extragalactic ultraviolet background for a high-resol ution cosmological simulation of a Milky Way-like galaxy and examine the effect on the absorption and emission properties of metals in the CGM. We find that a reduced quasar background brings the column density predictions into better agreement with recent data. Similarly, when the observationally derived physical properties of the gas are compared to the simulation, we find that the simulation gas is always at temperatures approximately 0.5 dex higher. Thus, similar column densities can be produced from fundamentally different gas. However, emission maps can provide complementary information to the line-of-sight column densities to better derive gas properties. From the simulations, we find that the brightest emission is less sensitive to the extragalactic background and that it closely follows the fundamental filamentary structure of the halo. This becomes increasingly true as the galaxy evolves from z=1 to z=0 and the majority of the gas transitions to a hotter, more diffuse phase. For the brightest ions (CIII, CIV, OVI), detectable emission can extend as far as 120 kpc at z=0. Finally, resolution is a limiting factor for the conclusions we can draw from emission observations but with moderate resolution and reasonable detection limits, upcoming instrumentation should place constraints on the physical properties of the CGM.
241 - Brian A. Keeney 2017
We present basic data and modeling for a survey of the cool, photo-ionized Circum-Galactic Medium (CGM) of low-redshift galaxies using far-UV QSO absorption line probes. This survey consists of targeted and serendipitous CGM subsamples, originally de scribed in Stocke et al. (2013, Paper 1). The targeted subsample probes low-luminosity, late-type galaxies at $z<0.02$ with small impact parameters ($langlerhorangle = 71$ kpc), and the serendipitous subsample probes higher luminosity galaxies at $zlesssim0.2$ with larger impact parameters ($langlerhorangle = 222$ kpc). HST and FUSE UV spectroscopy of the absorbers and basic data for the associated galaxies, derived from ground-based imaging and spectroscopy, are presented. We find broad agreement with the COS-Halos results, but our sample shows no evidence for changing ionization parameter or hydrogen density with distance from the CGM host galaxy, probably because the COS-Halos survey probes the CGM at smaller impact parameters. We find at least two passive galaxies with H I and metal-line absorption, confirming the intriguing COS-Halos result that galaxies sometimes have cool gas halos despite no on-going star formation. Using a new methodology for fitting H I absorption complexes, we confirm the CGM cool gas mass of Paper 1, but this value is significantly smaller than found by the COS-Halos survey. We trace much of this difference to the specific values of the low-$z$ meta-galactic ionization rate assumed. After accounting for this difference, a best-value for the CGM cool gas mass is found by combining the results of both surveys to obtain $log{(M/M_{odot})}=10.5pm0.3$, or ~30% of the total baryon reservoir of an $L geq L^*$, star-forming galaxy.
The Circumgalactic Medium (CGM) of late-type galaxies is characterized using UV spectroscopy of 11 targeted QSO/galaxy pairs at z < 0.02 with the Hubble Space Telescope Cosmic Origins Spectrograph and ~60 serendipitous absorber/galaxy pairs at z < 0. 2 with the Space Telescope Imaging Spectrograph. CGM warm cloud properties are derived, including volume filling factors of 3-5%, cloud sizes of 0.1-30 kpc, masses of 10-1e8 solar masses and metallicities of 0.1-1 times solar. Almost all warm CGM clouds within 0.5 virial radii are metal-bearing and many have velocities consistent with being bound, galactic fountain clouds. For galaxies with L > 0.1 L*, the total mass in these warm CGM clouds approaches 1e10 solar masses, ~10-15% of the total baryons in massive spirals and comparable to the baryons in their parent galaxy disks. This leaves >50% of massive spiral-galaxy baryons missing. Dwarfs (<0.1 L*) have smaller area covering factors and warm CGM masses (<5% baryon fraction), suggesting that many of their warm clouds escape. Constant warm cloud internal pressures as a function of impact parameter ($P/k ~ 10 cm^{-3} K) support the inference that previous COS detections of broad, shallow O VI and Ly-alpha absorptions are of an extensive (~400-600 kpc), hot (T ~ 1e6 K) intra-cloud gas which is very massive (>1e11 solar masses). While the warm CGM clouds cannot account for all the missing baryons in spirals, the hot intra-group gas can, and could account for ~20% of the cosmic baryon census at z ~ 0 if this hot gas is ubiquitous among spiral groups.
We describe a new approach to studying the intergalactic and circumgalactic medium in the local Universe: direct detection through narrow-band imaging of ultra-low surface brightness visible-wavelength line emission. We use the hydrodynamical cosmolo gical simulation EAGLE to investigate the expected brightness of this emission at low redshift ($z$ $lesssim$ 0.2). H$alpha$ emission in extended halos (analogous to the extended Ly$alpha$ halos/blobs detected around galaxies at high redshifts) has a surface brightness of $gtrsim700$ photons cm$^{-2}$ sr$^{-1}$ s$^{-1}$ out to $sim$100 kpc. Mock observations show that the Dragonfly Telephoto Array, equipped with state-of-the-art narrow-band filters, could directly image these structures in exposure times of $sim$10 hours. H$alpha$ fluorescence emission from this gas can be used to place strong constraints on the local ultra-violet background, and on gas flows around galaxies. Detecting H$alpha$ emission from the diffuse intergalactic medium (the cosmic web) is beyond current capabilities, but would be possible with a hypothetical 1000-lens Dragonfly array.
We estimate the detectability of X-ray metal-line emission from the circumgalactic medium (CGM) of galaxies over a large halo mass range ($mathrm{M}_{mathrm{200c}} =10^{11.5}$-$10^{14.5},mathrm{M}_{odot}$) using the EAGLE simulations. With the XRISM Resolve instrument, a few bright (K-$alpha$ or Fe L-shell) lines from $mathrm{M}_{mathrm{200c}} gtrsim 10^{13},mathrm{M}_{odot}$ haloes should be detectable. Using the Athena X-IFU or the Lynx Main Array, emission lines (especially from O$,$VII and O$,$VIII) from the inner CGM of $mathrm{M}_{mathrm{200c}} gtrsim10^{12.5},mathrm{M}_{odot}$ haloes become detectable, and intragroup and intracluster gas will be detectable out to the virial radius. With the Lynx Ultra-high Resolution Array, the inner CGM of haloes hosting $mathrm{L}_{*}$ galaxies is accessible. These estimates do assume long exposure times ($sim 1,$Ms) and large spatial bins ($sim1$-$10,mathrm{arcmin}^{2}$). We also investigate the properties of the gas producing this emission. CGM emission is dominated by collisionally ionized (CI) gas, and tends to come from halo centres. The gas is typically close to the maximum emissivity temperature for CI gas ($mathrm{T}_mathrm{peak}$), and denser and more metal-rich than the bulk of the CGM at a given distance from the central galaxy. However, for the K-$alpha$ lines, emission can come from hotter gas in haloes where the virialized, volume-filling gas is hotter than $mathrm{T}_mathrm{peak}$. Trends of emission with halo mass can largely be explained by differences in virial temperature. Differences between lines generally result from the different behaviour of the emissivity as a function of temperature of the K-$alpha$, He-$alpha$-like, and Fe~L-shell lines. We conclude that upcoming X-ray missions will open up a new window onto the hot CGM.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا