ترغب بنشر مسار تعليمي؟ اضغط هنا

Anisotropic expansion of a thermal dipolar Bose gas

164   0   0.0 ( 0 )
 نشر من قبل Benjamin Lev
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report on the anisotropic expansion of ultracold bosonic dysprosium gases at temperatures above quantum degeneracy and develop a quantitative theory to describe this behavior. The theory expresses the post-expansion aspect ratio in terms of temperature and microscopic collisional properties by incorporating Hartree-Fock mean-field interactions, hydrodynamic effects, and Bose-enhancement factors. Our results extend the utility of expansion imaging by providing accurate thermometry for dipolar thermal Bose gases, reducing error in expansion thermometry from tens of percent to only a few percent. Furthermore, we present a simple method to determine scattering lengths in dipolar gases, including near a Feshbach resonance, through observation of thermal gas expansion.



قيم البحث

اقرأ أيضاً

Quantum fluctuations are the origin of genuine quantum many-body effects, and can be neglected in classical mean-field phenomena. Here we report on the observation of stable quantum droplets containing $sim$ 800 atoms which are expected to collapse a t the mean-field level due to the essentially attractive interaction. By systematic measurements on individual droplets we demonstrate quantitatively that quantum fluctuations stabilize them against the mean-field collapse. We observe in addition interference of several droplets indicating that this stable many-body state is phase coherent.
We perform a theoretical study into how dipole-dipole interactions modify the properties of superfluid vortices within the context of a two-dimensional atomic Bose gas of co-oriented dipoles. The reduced density at a vortex acts like a giant anti-dip ole, changing the density profile and generating an effective dipolar potential centred at the vortex core whose most slowly decaying terms go as $1/rho^2$ and $ln(rho)/rho^3$. These effects modify the vortex-vortex interaction which, in particular, becomes anisotropic for dipoles polarized in the plane. Striking modifications to vortex-vortex dynamics are demonstrated, i.e. anisotropic co-rotation dynamics and the suppression of vortex annihilation.
We measure the excitation spectrum of a dipolar Chromium Bose Einstein Condensate with Raman-Bragg spectroscopy. The energy spectrum depends on the orientation of the dipoles with respect to the excitation momentum, demonstrating an anisotropy which originates from the dipole-dipole interactions between the atoms. We compare our results with the Bogoliubov theory based on the local density approximation, and, at large excitation wavelengths, with numerical simulations of the time dependent Gross-Pitaevskii equation. Our results show an anisotropy of the speed of sound
We study the stability of a thermal $^{39}$K Bose gas across a broad Feshbach resonance, focusing on the unitary regime, where the scattering length $a$ exceeds the thermal wavelength $lambda$. We measure the general scaling laws relating the particl e-loss and heating rates to the temperature, scattering length, and atom number. Both at unitarity and for positive $a ll lambda$ we find agreement with three-body theory. However, for $a<0$ and away from unitarity, we observe significant four-body decay. At unitarity, the three-body loss coefficient, $L_3 propto lambda^4$, is three times lower than the universal theoretical upper bound. This reduction is a consequence of species-specific Efimov physics and makes $^{39}$K particularly promising for studies of many-body physics in a unitary Bose gas.
381 - K. Aikawa , A. Frisch , M. Mark 2014
We report on the observation of a large anisotropy in the rethermalization dynamics of an ultracold dipolar Fermi gas driven out of equilibrium. Our system consists of an ultracold sample of strongly magnetic $^{167}$Er fermions, spin-polarized in th e lowest Zeeman sublevel. In this system, elastic collisions arise purely from universal dipolar scattering. Based on cross-dimensional rethermalization experiments, we observe a strong anisotropy of the scattering, which manifests itself in a large angular dependence of the thermal relaxation dynamics. Our result is in very good agreement with recent theoretical predictions. Furthermore, we measure the rethermalization rate as a function of temperature for different angles and find that the suppression of collisions by Pauli blocking is not influenced by the dipole orientation.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا