ترغب بنشر مسار تعليمي؟ اضغط هنا

Anisotropic excitation spectrum of a dipolar quantum Bose gas

193   0   0.0 ( 0 )
 نشر من قبل Laurent Vernac
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We measure the excitation spectrum of a dipolar Chromium Bose Einstein Condensate with Raman-Bragg spectroscopy. The energy spectrum depends on the orientation of the dipoles with respect to the excitation momentum, demonstrating an anisotropy which originates from the dipole-dipole interactions between the atoms. We compare our results with the Bogoliubov theory based on the local density approximation, and, at large excitation wavelengths, with numerical simulations of the time dependent Gross-Pitaevskii equation. Our results show an anisotropy of the speed of sound



قيم البحث

اقرأ أيضاً

We measure the excitation spectrum of a stable dipolar Bose--Einstein condensate over a wide momentum-range via Bragg spectroscopy. We precisely control the relative strength, $epsilon_{rm dd}$, of the dipolar to the contact interactions and observe that the spectrum increasingly deviates from the linear phononic behavior for increasing $epsilon_{rm dd}$. Reaching the dipolar dominated regime $epsilon_{rm dd}>1$, we observe the emergence of a roton minimum in the spectrum and its softening towards instability. We characterize how the excitation energy and the strength of the density-density correlations at the roton momentum vary with $epsilon_{rm dd}$. Our findings are in excellent agreement with numerical calculations based on mean-field Bogoliubov theory. When including beyond-mean-field corrections, in the form of a Lee-Huang-Yang potential, we observe a quantitative deviation from the experiment, questioning the validity of such a description in the roton regime.
We report on the anisotropic expansion of ultracold bosonic dysprosium gases at temperatures above quantum degeneracy and develop a quantitative theory to describe this behavior. The theory expresses the post-expansion aspect ratio in terms of temper ature and microscopic collisional properties by incorporating Hartree-Fock mean-field interactions, hydrodynamic effects, and Bose-enhancement factors. Our results extend the utility of expansion imaging by providing accurate thermometry for dipolar thermal Bose gases, reducing error in expansion thermometry from tens of percent to only a few percent. Furthermore, we present a simple method to determine scattering lengths in dipolar gases, including near a Feshbach resonance, through observation of thermal gas expansion.
We discuss fluctuations in a dilute two-dimensional Bose-condensed dipolar gas, which has a roton-maxon character of the excitation spectrum. We calculate the density-density correlation function, fluctuation corrections to the chemical potential, co mpressibility, and the normal (superfluid) fraction. It is shown that the presence of the roton strongly enhances fluctuations of the density, and we establish the validity criterion of the Bogoliubov approach. At T=0 the condensate depletion becomes significant if the roton minimum is sufficiently close to zero. At finite temperatures exceeding the roton energy, the effect of thermal fluctuations is stronger and it may lead to a large normal fraction of the gas and compressibility.
Quantum fluctuations are the origin of genuine quantum many-body effects, and can be neglected in classical mean-field phenomena. Here we report on the observation of stable quantum droplets containing $sim$ 800 atoms which are expected to collapse a t the mean-field level due to the essentially attractive interaction. By systematic measurements on individual droplets we demonstrate quantitatively that quantum fluctuations stabilize them against the mean-field collapse. We observe in addition interference of several droplets indicating that this stable many-body state is phase coherent.
210 - R. N. Bisset , D. Baillie , 2012
We develop a finite temperature Hartree theory for the trapped dipolar Bose gas. We use this theory to study thermal effects on the mechanical stability of the system and density oscillating condensate states. We present results for the stability pha se diagram as a function of temperature and aspect ratio. In oblate traps above the critical temperature for condensation we find that the Hartree theory predicts significant stability enhancement over the semiclassical result. Below the critical temperature we find that thermal effects are well described by accounting for the thermal depletion of the condensate. Our results also show that density oscillating condensate states occur over a range of interaction strengths that broadens with increasing temperature.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا