ترغب بنشر مسار تعليمي؟ اضغط هنا

Hafnium carbide formation in oxygen deficient hafnium oxide thin films

93   0   0.0 ( 0 )
 نشر من قبل Christian Rodenb\\\"ucher
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

On highly oxygen deficient thin films of hafnium oxide (hafnia, HfO$_{2-x}$) contaminated with adsorbates of carbon oxides, the formation of hafnium carbide (HfC$_x$) at the surface during vacuum annealing at temperatures as low as 600 {deg}C is reported. Using X-ray photoelectron spectroscopy the evolution of the HfC$_x$ surface layer related to a transformation from insulating into metallic state is monitored in situ. In contrast, for fully stoichiometric HfO$_2$ thin films prepared and measured under identical conditions, the formation of HfC$_x$ was not detectable suggesting that the enhanced adsorption of carbon oxides on oxygen deficient films provides a carbon source for the carbide formation. This shows that a high concentration of oxygen vacancies in carbon contaminated hafnia lowers considerably the formation energy of hafnium carbide. Thus, the presence of a sufficient amount of residual carbon in resistive random access memory devices might lead to a similar carbide formation within the conducting filaments due to Joule heating.



قيم البحث

اقرأ أيضاً

Transition metal oxide memristors, or resistive random-access memory (RRAM) switches, are under intense development for storage-class memory because of their favorable operating power, endurance, speed, and density. Their commercial deployment critic ally depends on predictive compact models based on understanding nanoscale physico-chemical forces, which remains elusive and controversial owing to the difficulties in directly observing atomic motions during resistive switching, Here, using scanning transmission synchrotron x-ray spectromicroscopy to study in-situ switching of hafnium oxide memristors, we directly observed the formation of a localized oxygen-deficiency-derived conductive channel surrounded by a low-conductivity ring of excess oxygen. Subsequent thermal annealing homogenized the segregated oxygen, resetting the cells towards their as-grown resistance state. We show that the formation and dissolution of the conduction channel are successfully modeled by radial thermophoresis and Fick diffusion of oxygen atoms driven by Joule heating. This confirmation and quantification of two opposing nanoscale radial forces that affect bipolar memristor switching are important components for any future physics-based compact model for the electronic switching of these devices.
While the recent establishment of the role of thermophoresis/diffusion-driven oxygen migration during resistance switching in metal oxide memristors provided critical insights required for memristor modeling, extended investigations of the role of ox ygen migration during ageing and failure remain to be detailed. Such detailing will enable failure-tolerant design, which can lead to enhanced performance of memristor-based next-generation storage-class memory. Here we directly observed lateral oxygen migration using in-situ synchrotron x-ray absorption spectromicroscopy of HfOx memristors during initial resistance switching, wear over millions of switching cycles, and eventual failure, through which we determined potential physical causes of failure. Using this information, we reengineered devices to mitigate three failure mechanisms, and demonstrated an improvement in endurance of about three orders of magnitude.
We report on the observation of metallic behavior in thin films of oxygen-deficient SrTiO$_3$ - down to 9 unit cells - when coherently strained on (001) SrTiO$_3$ or DyScO$_3$-buffered (001) SrTiO$_3$ substrates. These films have carrier concentratio ns of up to 2$times10^{22}$ cm$^{-3}$ and mobilities of up to 19,000 cm$^2$/V-s at 2 K. There exists a non-conducting layer in our SrTiO$_{3-delta}$ films that is larger in films with lower carrier concentrations. This non-conducting layer can be attributed to a surface depletion layer due to a Fermi level pinning potential. The depletion width, transport, and structural properties are not greatly affected by the insertion of a DyScO$_3$ buffer between the SrTiO$_3$ film and SrTiO$_3$ substrate.
106 - Ri He , Hongyu Wu , Shi Liu 2021
The discovery of ferroelectric HfO2 in thin films and more recently in bulk is an important breakthrough because of its silicon-compatibility and unexpectedly persistent polarization at low dimensions, but the origin of its ferroelectricity is still under debate. The stabilization of the metastable polar orthorhombic phase was often considered as the cumulative result of various extrinsic factors such as stress, grain boundary, and oxygen vacancies as well as phase transition kinetics during the annealing process. We propose a novel mechanism to stabilize the polar orthorhombic phase over the nonpolar monoclinic phase that is the bulk ground state. Our first-principles calculations demonstrate that the doubly positively charged oxygen vacancy, an overlooked defect but commonly presented in binary oxides, is critical for the stabilization of ferroelectric phase. The charge state of oxygen vacancy serves as a new degree of freedom to control the thermodynamic stability of competing phases of wide-band-gap oxides.
144 - Dongwon Shin , Zi-Kui Liu 2007
Phase stabilities of Hf-Si-O and Zr-Si-O have been studied with first-principles and thermodynamic modeling. From the obtained thermodynamic descriptions, phase diagrams pertinent to thin film processing were calculated. We found that the relative st ability of the metal silicates with respect to their binary oxides plays a critical role in silicide formation. It was observed that both the HfO$_2$/Si and ZrO$_2$/Si interfaces are stable in a wide temperature range and silicide may form at low temperatures, partially at the HfO$_2$/Si interface.
التعليقات (0)
لا يوجد تعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا