ترغب بنشر مسار تعليمي؟ اضغط هنا

Computing the Oja Median in R: The Package OjaNP

86   0   0.0 ( 0 )
 نشر من قبل Daniel Fischer
 تاريخ النشر 2016
  مجال البحث الاحصاء الرياضي
والبحث باللغة English




اسأل ChatGPT حول البحث

The Oja median is one of several extensions of the univariate median to the multivariate case. It has many nice properties, but is computationally demanding. In this paper, we first review the properties of the Oja median and compare it to other multivariate medians. Afterwards we discuss four algorithms to compute the Oja median, which are implemented in our R-package OjaNP. Besides these algorithms, the package contains also functions to compute Oja signs, Oja signed ranks, Oja ranks, and the related scatter concepts. To illustrate their use, the corresponding multivariate one- and $C$-sample location tests are implemented.



قيم البحث

اقرأ أيضاً

Although models for count data with over-dispersion have been widely considered in the literature, models for under-dispersion -- the opposite phenomenon -- have received less attention as it is only relatively common in particular research fields su ch as biodosimetry and ecology. The Good distribution is a flexible alternative for modelling count data showing either over-dispersion or under-dispersion, although no R packages are still available to the best of our knowledge. We aim to present in the following the R package good that computes the standard probabilistic functions (i.e., probability density function, cumulative distribution function, and quantile function) and generates random samples from a population following a Good distribution. The package also considers a function for Good regression, including covariates in a similar way to that of the standard glm function. We finally show the use of such a package with some real-world data examples addressing both over-dispersion and especially under-dispersion.
The R package sns implements Stochastic Newton Sampler (SNS), a Metropolis-Hastings Monte Carlo Markov Chain algorithm where the proposal density function is a multivariate Gaussian based on a local, second-order Taylor series expansion of log-densit y. The mean of the proposal function is the full Newton step in Newton-Raphson optimization algorithm. Taking advantage of the local, multivariate geometry captured in log-density Hessian allows SNS to be more efficient than univariate samplers, approaching independent sampling as the density function increasingly resembles a multivariate Gaussian. SNS requires the log-density Hessian to be negative-definite everywhere in order to construct a valid proposal function. This property holds, or can be easily checked, for many GLM-like models. When initial point is far from density peak, running SNS in non-stochastic mode by taking the Newton step, augmented with with line search, allows the MCMC chain to converge to high-density areas faster. For high-dimensional problems, partitioning of state space into lower-dimensional subsets, and applying SNS to the subsets within a Gibbs sampling framework can significantly improve the mixing of SNS chains. In addition to the above strategies for improving convergence and mixing, sns offers diagnostics and visualization capabilities, as well as a function for sample-based calculation of Bayesian predictive posterior distributions.
We describe the vote package in R, which implements the plurality (or first-past-the-post), two-round runoff, score, approval and single transferable vote (STV) electoral systems, as well as methods for selecting the Condorcet winner and loser. We em phasize the STV system, which we have found to work well in practice for multi-winner elections with small electorates, such as committee and council elections, and the selection of multiple job candidates. For single-winner elections, the STV is also called instant runoff voting (IRV), ranked choice voting (RCV), or the alternative vote (AV) system. The package also implements the STV system with equal preferences, for the first time in a software package, to our knowledge. It also implements a new variant of STV, in which a minimum number of candidates from a specified group are required to be elected. We illustrate the package with several real examples.
We present and describe the GPFDA package for R. The package provides flexible functionalities for dealing with Gaussian process regression (GPR) models for functional data. Multivariate functional data, functional data with multidimensional inputs, and nonseparable and/or nonstationary covariance structures can be modeled. In addition, the package fits functional regression models where the mean function depends on scalar and/or functional covariates and the covariance structure is modeled by a GPR model. In this paper, we present the versatility of GPFDA with respect to mean function and covariance function specifications and illustrate the implementation of estimation and prediction of some models through reproducible numerical examples.
We introduce the UPG package for highly efficient Bayesian inference in probit, logit, multinomial logit and binomial logit models. UPG offers a convenient estimation framework for balanced and imbalanced data settings where sampling efficiency is en sured through Markov chain Monte Carlo boosting methods. All sampling algorithms are implemented in C++, allowing for rapid parameter estimation. In addition, UPG provides several methods for fast production of output tables and summary plots that are easily accessible to a broad range of users.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا