ﻻ يوجد ملخص باللغة العربية
Although models for count data with over-dispersion have been widely considered in the literature, models for under-dispersion -- the opposite phenomenon -- have received less attention as it is only relatively common in particular research fields such as biodosimetry and ecology. The Good distribution is a flexible alternative for modelling count data showing either over-dispersion or under-dispersion, although no R packages are still available to the best of our knowledge. We aim to present in the following the R package good that computes the standard probabilistic functions (i.e., probability density function, cumulative distribution function, and quantile function) and generates random samples from a population following a Good distribution. The package also considers a function for Good regression, including covariates in a similar way to that of the standard glm function. We finally show the use of such a package with some real-world data examples addressing both over-dispersion and especially under-dispersion.
Pooled testing (also known as group testing), where diagnostic tests are performed on pooled samples, has broad applications in the surveillance of diseases in animals and humans. An increasingly common use case is molecular xenomonitoring (MX), wher
Prediction rule ensembles (PREs) are sparse collections of rules, offering highly interpretable regression and classification models. This paper presents the R package pre, which derives PREs through the methodology of Friedman and Popescu (2008). Th
The R package sns implements Stochastic Newton Sampler (SNS), a Metropolis-Hastings Monte Carlo Markov Chain algorithm where the proposal density function is a multivariate Gaussian based on a local, second-order Taylor series expansion of log-densit
We present and describe the GPFDA package for R. The package provides flexible functionalities for dealing with Gaussian process regression (GPR) models for functional data. Multivariate functional data, functional data with multidimensional inputs,
We introduce the UPG package for highly efficient Bayesian inference in probit, logit, multinomial logit and binomial logit models. UPG offers a convenient estimation framework for balanced and imbalanced data settings where sampling efficiency is en