ترغب بنشر مسار تعليمي؟ اضغط هنا

Two-photon vibrational excitation of air by long-wave infrared laser pulses

60   0   0.0 ( 0 )
 نشر من قبل John Palastro
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Ultrashort long-wave infrared (LWIR) laser pulses can resonantly excite vibrations in N2 and O2 through a two-photon transition. The absorptive, vibrational component of the ultrafast optical nonlinearity grows in time, starting smaller than, but quickly surpassing, the electronic, rotational, and vibrational refractive components. The growth of the vibrational component results in a novel mechanism of 3rd harmonic generation, providing an additional two-photon excitation channel, fundamental + 3rd harmonic. The original and emergent two-photon excitations drive the resonance exactly out of phase, causing spatial decay of the absorptive, vibrational nonlinearity. This nearly eliminates two-photon vibrational absorption. Here we present simulations and analytical calculations demonstrating how these processes modify the ultrafast optical nonlinearity in air. The results reveal nonlinear optical phenomena unique to the LWIR regime of ultrashort pulse propagation in atmosphere.



قيم البحث

اقرأ أيضاً

We investigate the generation of broadband terahertz (THz) pulses with phase singularity from air plasmas created by fundamental and second harmonic laser pulses. We show that when the second harmonic beam carries a vortex charge, the THz beam acquir es a vortex structure as well. A generic feature of such THz vortex is that the intensity is modulated along the azimuthal angle, which can be attributed to the spatially varying relative phase difference between the two pump harmonics. Fully space and time resolved numerical simulations reveal that transverse instabilities of the pump further affect the emitted THz field along nonlinear propagation, which produces additional singularities resulting in a rich vortex structure. The predicted intensity modulation is experimentally demonstrated with a thermal camera, in excellent agreement with simulation results. The presence of phase singularities in the experiment is revealed by astigmatic transformation of the beam using a cylindrical mirror.
We experimentally demonstrate generation of strong narrow-bandwidth emissions with excellent coherent properties at ~391 nm and ~428 nm from molecular ions of nitrogen inside a femtosecond filament in air by an orthogonally polarized two-color driver field (i. e., 800 nm laser pulse and its second harmonic). The durations of the coherent emissions at 391 nm and 428 nm are measured to be ~2.4 ps and ~7.8 ps respectively, both of which are much longer than the duration of the pump and its second harmonic pulses. Furthermore, the measured temporal decay characteristics of the excited molecular systems suggest an instantaneous population inversion mechanism that may be achieved in molecular nitrogen ions at an ultrafast time scale comparable to the 800 nm pump pulse.
205 - Zuoye Liu , Yu Cao , Yanchao Shi 2013
We experimentally demonstrate energy exchange between a delay-tuned femtosecond beam and two delay-fixed ones as they spatiotemporally overlapped and experienced filamentation in air. The energy exchange process in the relative time delay is dramatic ally elongated up to 40 ps in the presence of plasma grating, indicating that filamentary beams coupling may be an effective method for filament control.
We demonstrate experimentally the resonant excitation of plasma waves by trains of laser pulses. We also take an important first step to achieving an energy recovery plasma accelerator by showing that unused wakefield energy can be removed by an out- of-resonance trailing laser pulse. The measured laser wakefields are found to be in excellent agreement with analytical and numerical models of wakefield excitation in the linear regime. Our results indicate a promising direction for achieving highly controlled, GeV-scale laser-plasma accelerators operating at multi-kilohertz repetition rates. This article was published in Physical Review Letters 119, 044802 on 27 July 2017. DOI: 10.1103/PhysRevLett.119.044802 Copyright 2017 American Physical Society.
The use of strong-field (i.e. intensities in excess of 10^13 Wcm-2) few-cycle ultrafast (durations of 10 femtoseconds or less) laser pulses to create, manipulate and image vibrational wavepackets is investigated. Quasi-classical modelling of the init ial superposition through tunnel ionization, wavepacket modification by nonadiabatically altering the nuclear environment via the transition dipole and the Stark effect, and measuring the control outcome by fragmenting the molecule is detailed. The influence of the laser intensity on strong-field ultrafast wavepacket control is discussed in detail: by modifying the distribution of laser intensities imaged, we show that focal conditions can be created that give preference to this three-pulse technique above processes induced by the pulses alone. An experimental demonstration is presented, and the nuclear dynamics inferred by the quasi-classical model discussed. Finally, we present the results of a systematic investigation of a dual-control pulse scheme, indicating that single vibrational states should be observable with high fidelity, and the populated state defined by varying the arrival time of the two control pulses. The relevance of such strong-field coherent control methods to the manipulation of electron localization and attosecond science is discussed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا