ترغب بنشر مسار تعليمي؟ اضغط هنا

Strategic Attentive Writer for Learning Macro-Actions

67   0   0.0 ( 0 )
 نشر من قبل Alexander Vezhnevets
 تاريخ النشر 2016
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a novel deep recurrent neural network architecture that learns to build implicit plans in an end-to-end manner by purely interacting with an environment in reinforcement learning setting. The network builds an internal plan, which is continuously updated upon observation of the next input from the environment. It can also partition this internal representation into contiguous sub- sequences by learning for how long the plan can be committed to - i.e. followed without re-planing. Combining these properties, the proposed model, dubbed STRategic Attentive Writer (STRAW) can learn high-level, temporally abstracted macro- actions of varying lengths that are solely learnt from data without any prior information. These macro-actions enable both structured exploration and economic computation. We experimentally demonstrate that STRAW delivers strong improvements on several ATARI games by employing temporally extended planning strategies (e.g. Ms. Pacman and Frostbite). It is at the same time a general algorithm that can be applied on any sequence data. To that end, we also show that when trained on text prediction task, STRAW naturally predicts frequent n-grams (instead of macro-actions), demonstrating the generality of the approach.



قيم البحث

اقرأ أيضاً

This paper presents a data-driven approach for multi-robot coordination in partially-observable domains based on Decentralized Partially Observable Markov Decision Processes (Dec-POMDPs) and macro-actions (MAs). Dec-POMDPs provide a general framework for cooperative sequential decision making under uncertainty and MAs allow temporally extended and asynchronous action execution. To date, most methods assume the underlying Dec-POMDP model is known a priori or a full simulator is available during planning time. Previous methods which aim to address these issues suffer from local optimality and sensitivity to initial conditions. Additionally, few hardware demonstrations involving a large team of heterogeneous robots and with long planning horizons exist. This work addresses these gaps by proposing an iterative sampling based Expectation-Maximization algorithm (iSEM) to learn polices using only trajectory data containing observations, MAs, and rewards. Our experiments show the algorithm is able to achieve better solution quality than the state-of-the-art learning-based methods. We implement two variants of multi-robot Search and Rescue (SAR) domains (with and without obstacles) on hardware to demonstrate the learned policies can effectively control a team of distributed robots to cooperate in a partially observable stochastic environment.
In situations where explicit communication is limited, human collaborators act by learning to: (i) infer meaning behind their partners actions, and (ii) convey private information about the state to their partner implicitly through actions. The first component of this learning process has been well-studied in multi-agent systems, whereas the second --- which is equally crucial for successful collaboration --- has not. To mimic both components mentioned above, thereby completing the learning process, we introduce a novel algorithm: Policy Belief Learning (PBL). PBL uses a belief module to model the other agents private information and a policy module to form a distribution over actions informed by the belief module. Furthermore, to encourage communication by actions, we propose a novel auxiliary reward which incentivizes one agent to help its partner to make correct inferences about its private information. The auxiliary reward for communication is integrated into the learning of the policy module. We evaluate our approach on a set of environments including a matrix game, particle environment and the non-competitive bidding problem from contract bridge. We show empirically that this auxiliary reward is effective and easy to generalize. These results demonstrate that our PBL algorithm can produce strong pairs of agents in collaborative games where explicit communication is disabled.
We propose a simple, general and effective technique, Reward Randomization for discovering diverse strategic policies in complex multi-agent games. Combining reward randomization and policy gradient, we derive a new algorithm, Reward-Randomized Polic y Gradient (RPG). RPG is able to discover multiple distinctive human-interpretable strategies in challenging temporal trust dilemmas, including grid-world games and a real-world game Agar.io, where multiple equilibria exist but standard multi-agent policy gradient algorithms always converge to a fixed one with a sub-optimal payoff for every player even using state-of-the-art exploration techniques. Furthermore, with the set of diverse strategies from RPG, we can (1) achieve higher payoffs by fine-tuning the best policy from the set; and (2) obtain an adaptive agent by using this set of strategies as its training opponents. The source code and example videos can be found in our website: https://sites.google.com/view/staghuntrpg.
Aiming at expanding few-shot relations coverage in knowledge graphs (KGs), few-shot knowledge graph completion (FKGC) has recently gained more research interests. Some existing models employ a few-shot relations multi-hop neighbor information to enha nce its semantic representation. However, noise neighbor information might be amplified when the neighborhood is excessively sparse and no neighbor is available to represent the few-shot relation. Moreover, modeling and inferring complex relations of one-to-many (1-N), many-to-one (N-1), and many-to-many (N-N) by previous knowledge graph completion approaches requires high model complexity and a large amount of training instances. Thus, inferring complex relations in the few-shot scenario is difficult for FKGC models due to limited training instances. In this paper, we propose a few-shot relational learning with global-local framework to address the above issues. At the global stage, a novel gated and attentive neighbor aggregator is built for accurately integrating the semantics of a few-shot relations neighborhood, which helps filtering the noise neighbors even if a KG contains extremely sparse neighborhoods. For the local stage, a meta-learning based TransH (MTransH) method is designed to model complex relations and train our model in a few-shot learning fashion. Extensive experiments show that our model outperforms the state-of-the-art FKGC approaches on the frequently-used benchmark datasets NELL-One and Wiki-One. Compared with the strong baseline model MetaR, our model achieves 5-shot FKGC performance improvements of 8.0% on NELL-One and 2.8% on Wiki-One by the metric Hits@10.
Data augmentation is usually used by supervised learning approaches for offline writer identification, but such approaches require extra training data and potentially lead to overfitting errors. In this study, a semi-supervised feature learning pipel ine was proposed to improve the performance of writer identification by training with extra unlabeled data and the original labeled data simultaneously. Specifically, we proposed a weighted label smoothing regularization (WLSR) method for data augmentation, which assigned the weighted uniform label distribution to the extra unlabeled data. The WLSR method could regularize the convolutional neural network (CNN) baseline to allow more discriminative features to be learned to represent the properties of different writing styles. The experimental results on well-known benchmark datasets (ICDAR2013 and CVL) showed that our proposed semi-supervised feature learning approach could significantly improve the baseline measurement and perform competitively with existing writer identification approaches. Our findings provide new insights into offline write identification.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا