ﻻ يوجد ملخص باللغة العربية
Data augmentation is usually used by supervised learning approaches for offline writer identification, but such approaches require extra training data and potentially lead to overfitting errors. In this study, a semi-supervised feature learning pipeline was proposed to improve the performance of writer identification by training with extra unlabeled data and the original labeled data simultaneously. Specifically, we proposed a weighted label smoothing regularization (WLSR) method for data augmentation, which assigned the weighted uniform label distribution to the extra unlabeled data. The WLSR method could regularize the convolutional neural network (CNN) baseline to allow more discriminative features to be learned to represent the properties of different writing styles. The experimental results on well-known benchmark datasets (ICDAR2013 and CVL) showed that our proposed semi-supervised feature learning approach could significantly improve the baseline measurement and perform competitively with existing writer identification approaches. Our findings provide new insights into offline write identification.
Federated learning (FL) is a promising way to use the computing power of mobile devices while maintaining the privacy of users. Current work in FL, however, makes the unrealistic assumption that the users have ground-truth labels on their devices, wh
In this paper, we propose a new wrapper feature selection approach with partially labeled training examples where unlabeled observations are pseudo-labeled using the predictions of an initial classifier trained on the labeled training set. The wrappe
In high-dimensional data space, semi-supervised feature learning based on Euclidean distance shows instability under a broad set of conditions. Furthermore, the scarcity and high cost of labels prompt us to explore new semi-supervised learning method
Semi-supervised learning (SSL) is a key approach toward more data-efficient machine learning by jointly leverage both labeled and unlabeled data. We propose AlphaMatch, an efficient SSL method that leverages data augmentations, by efficiently enforci
In this work, we propose a simple yet effective meta-learning algorithm in semi-supervised learning. We notice that most existing consistency-based approaches suffer from overfitting and limited model generalization ability, especially when training