ترغب بنشر مسار تعليمي؟ اضغط هنا

Search for ultralight scalar dark matter with atomic spectroscopy

175   0   0.0 ( 0 )
 نشر من قبل Ken Van Tilburg
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report new limits on ultralight scalar dark matter (DM) with dilaton-like couplings to photons that can induce oscillations in the fine-structure constant alpha. Atomic dysprosium exhibits an electronic structure with two nearly degenerate levels whose energy splitting is sensitive to changes in alpha. Spectroscopy data for two isotopes of dysprosium over a two-year span is analyzed for coherent oscillations with angular frequencies below 1 rad/s. No signal consistent with a DM coupling is identified, leading to new constraints on dilaton-like photon couplings over a wide mass range. Under the assumption that the scalar field comprises all of the DM, our limits on the coupling exceed those from equivalence-principle tests by up to 4 orders of magnitude for masses below 3 * 10^-18 eV. Excess oscillatory power, inconsistent with fine-structure variation, is detected in a control channel, and is likely due to a systematic effect. Our atomic spectroscopy limits on DM are the first of their kind, and leave substantial room for improvement with state-of-the-art atomic clocks.



قيم البحث

اقرأ أيضاً

Among the prominent candidates for dark matter are bosonic fields with small scalar couplings to the Standard-Model particles. Several techniques are employed to search for such couplings and the current best constraints are derived from tests of gra vity or atomic probes. In experiments employing atoms, observables would arise from expected dark-matter-induced oscillations in the fundamental constants of nature. These studies are primarily sensitive to underlying particle masses below $10^{-14}$ eV. We present a method to search for fast oscillations of fundamental constants using atomic spectroscopy in cesium vapor. We demonstrate sensitivity to scalar interactions of dark matter associated with a particle mass in the range $8cdot10^{-11}$ to $4cdot 10^{-7}$ eV. In this range our experiment yields constraints on such interactions, which within the framework of an astronomical-size dark matter structure, are comparable with, or better than, those provided by experiments probing deviations from the law of gravity.
We show that gravitational wave detectors based on a type of atom interferometry are sensitive to ultralight scalar dark matter. Such dark matter can cause temporal oscillations in fundamental constants with a frequency set by the dark matter mass, a nd amplitude determined by the local dark matter density. The result is a modulation of atomic transition energies. This signal is ideally suited to a type of gravitational wave detector that compares two spatially separated atom interferometers referenced by a common laser. Such a detector can improve on current searches for electron-mass or electric-charge modulus dark matter by up to 10 orders of magnitude in coupling, in a frequency band complementary to that of other proposals. It demonstrates that this class of atomic sensors is qualitatively different from other gravitational wave detectors, including those based on laser interferometry. By using atomic-clock-like interferometers, laser noise is mitigated with only a single baseline. These atomic sensors can thus detect scalar signals in addition to tensor signals.
90 - Ryo Kato , Jiro Soda 2019
An ultralight scalar field is a candidate for the dark matter. The ultralight scalar dark matter with mass around $10^{-23},{rm eV}$ induces oscillations of the pulse arrival time in the sensitive frequency range of the pulsar timing arrays. We searc h for the ultralight scalar dark matter using the North American Nanohertz Observatory for Gravitational Waves 11-year Data Set. We give the 95% confidence upper limit for the signal induced by the ultralight scalar dark matter. In comparison with the published Bayesian upper limits on the amplitude of the ultralight scalar dark matter obtained by Bayesian analysis using the Parkes Pulsar Timing Array 12-year data set (Porayko et al. 2018), we find three times stronger upper limit in the frequency range from $10^{-8.34}$ to $10^{-8.19},{ rm Hz}$ which corresponds to the mass range from $9.45times10^{-24}$ to $1.34times10^{-23},{rm eV}$. In terms of the energy density of the dark matter, we find that the energy density near the Earth is less than $7,{rm GeV/cm^3}$ in the range from $10^{-8.55}$ to $10^{-8.01},{ rm Hz}$ (from $5.83times10^{-24}$ to $2.02times10^{-23},{rm eV}$). The strongest upper limit on the the energy density is given by $2,{rm GeV/cm^3}$ at a frequency $10^{-8.28},{ rm Hz}$ (corresponding to a mass $1.09times10^{-23},{rm eV}$). We find that the signal of the ultralight scalar dark matter can be explained by the solar system ephemeris effect. Also, we reveal that the model of the solar system ephemeris effect prefers parameters which are contrary to the expectation that noise will be reduced on all pulsars.
111 - Wei Zhao , Dongfeng Gao , Jin Wang 2021
We study the environmental dependence of ultralight scalar dark matter (DM) with linear interactions to the standard model particles. The solution to the DM field turns out to be a sum of the cosmic harmonic oscillation term and the local exponential fluctuation term. The amplitude of the first term depends on the local DM density and the mass of the DM field. The second term is induced by the local distribution of matter, such as the Earth. Then, we compute the phase shift induced by the DM field in atom interferometers (AIs), through solving the trajectories of atoms. Especially, the AI signal for the violation of weak equivalence principle (WEP) caused by the DM field is calculated. Depending on the values of the DM coupling parameters, contributions to the WEP violation from the first and second terms of the DM field can be either comparable or one larger than the other. Finally, we give some constraints to DM coupling parameters using results from the terrestrial atomic WEP tests.
We propose a new method to search for hypothetical scalar particles that have feeble interactions with Standard-Model particles. In the presence of massive bodies, these interactions produce a non-zero Yukawa-type scalar-field magnitude. Using radio- frequency spectroscopy data of atomic dysprosium, as well as atomic clock spectroscopy data, we constrain the Yukawa-type interactions of a scalar field with the photon, electron, and nucleons for a range of scalar-particle masses corresponding to length scales $ > 10$ cm. In the limit as the scalar-particle mass $m_phi to 0$, our derived limits on the Yukawa-type interaction parameters are: $Lambda_gamma gtrsim 8 times 10^{19}$ GeV, $Lambda_e gtrsim 1.3 times 10^{19}$ GeV, and $Lambda_N gtrsim 6 times 10^{20}$ GeV. Our measurements also constrain combinations of interaction parameters, which cannot otherwise be probed with traditional anomalous-force measurements. We suggest further measurements to improve on the current level of sensitivity.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا