ترغب بنشر مسار تعليمي؟ اضغط هنا

Discorrelated quantum states

78   0   0.0 ( 0 )
 نشر من قبل Evan Meyer-Scott
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The statistical properties of photons are fundamental to investigating quantum mechanical phenomena using light. In multi-photon, two-mode systems, correlations may exist between outcomes of measurements made on each mode which exhibit useful properties. Correlation in this sense can be thought of as increasing the probability of a particular outcome of a measurement on one subsystem given a measurement on a correlated subsystem. Here, we show a statistical property we call discorrelation, in which the probability of a particular outcome of one subsystem is reduced to zero, given a measurement on a discorrelated subsystem. We show how such a state can be constructed using readily available building blocks of quantum optics, namely coherent states, single photons, beam splitters and projective measurement. We present a variety of discorrelated states, show that they are entangled, and study their sensitivity to loss.



قيم البحث

اقرأ أيضاً

We show how continuous matrix product states of quantum field theories can be described in terms of the dissipative non-equilibrium dynamics of a lower-dimensional auxiliary boundary field theory. We demonstrate that the spatial correlation functions of the bulk field can be brought into one-to-one correspondence with the temporal statistics of the quantum jumps of the boundary field. This equivalence: (1) illustrates an intimate connection between the theory of continuous quantum measurement and quantum field theory; (2) gives an explicit construction of the boundary field theory allowing the extension of real-space renormalization group methods to arbitrary dimensional quantum field theories without the introduction of a lattice parameter; and (3) yields a novel interpretation of recent cavity QED experiments in terms of quantum field theory, and hence paves the way toward observing genuine quantum phase transitions in such zero-dimensional driven quantum systems.
282 - M. Rossi , M. Huber , D. Bru{ss} 2012
We introduce a class of multiqubit quantum states which generalizes graph states. These states correspond to an underlying mathematical hypergraph, i.e. a graph where edges connecting more than two vertices are considered. We derive a generalised sta bilizer formalism to describe this class of states. We introduce the notion of k-uniformity and show that this gives rise to classes of states which are inequivalent under the action of the local Pauli group. Finally we disclose a one-to-one correspondence with states employed in quantum algorithms, such as Deutsch-Jozsas and Grovers.
We introduce quantum hypercube states, a class of continuous-variable quantum states that are generated as orthographic projections of hypercubes onto the quadrature phase-space of a bosonic mode. In addition to their interesting geometry, hypercube states display phase-space features much smaller than Plancks constant, and a large volume of Wigner-negativity. We theoretically show that these features make hypercube states sensitive to displacements at extremely small scales in a way that is surprisingly robust to initial thermal occupation and to small separation of the superposed state-components. In a high-temperature proof-of-principle optomechanics experiment we observe, and match to theory, the signature outer-edge vertex structure of hypercube states.
The striking differences between quantum and classical systems predicate disruptive quantum technologies. We peruse quantumness from a variety of viewpoints, concentrating on phase-space formulations because they can be applied beyond particular symm etry groups. The symmetry-transcending properties of the Husimi $Q$ function make it our basic tool. In terms of the latter, we examine quantities such as the Wehrl entropy, inverse participation ratio, cumulative multipolar distribution, and metrological power, which are linked to intrinsic properties of any quantum state. We use these quantities to formulate extremal principles and determine in this way which states are the most and least quantum; the corresponding properties and potential usefulness of each extremal principle are explored in detail. While the extrema largely coincide for continuous-variable systems, our analysis of spin systems shows that care must be taken when applying an extremal principle to new contexts.
In this paper, we study metrics of quantum states. These metrics are natural generalization of trace metric and Bures metric. We will prove that the metrics are joint convex and contractive under quantum operation. Our results can find important appl ication in studying the geometry of quantum states and is useful to detect entanglement.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا