ترغب بنشر مسار تعليمي؟ اضغط هنا

Holographic quantum states

154   0   0.0 ( 0 )
 نشر من قبل Tobias J. Osborne
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We show how continuous matrix product states of quantum field theories can be described in terms of the dissipative non-equilibrium dynamics of a lower-dimensional auxiliary boundary field theory. We demonstrate that the spatial correlation functions of the bulk field can be brought into one-to-one correspondence with the temporal statistics of the quantum jumps of the boundary field. This equivalence: (1) illustrates an intimate connection between the theory of continuous quantum measurement and quantum field theory; (2) gives an explicit construction of the boundary field theory allowing the extension of real-space renormalization group methods to arbitrary dimensional quantum field theories without the introduction of a lattice parameter; and (3) yields a novel interpretation of recent cavity QED experiments in terms of quantum field theory, and hence paves the way toward observing genuine quantum phase transitions in such zero-dimensional driven quantum systems.



قيم البحث

اقرأ أيضاً

Recent progress in studies of holographic dualities, originally motivated by insights from string theory, has led to a confluence with concepts and techniques from quantum information theory. A particularly successful approach has involved capturing holographic properties by means of tensor networks which not only give rise to physically meaningful correlations of holographic boundary states, but also reproduce and refine features of quantum error correction in holography. This topical review provides an overview over recent successful realizations of such models. It does so by building on an introduction of the theoretical foundations of AdS/CFT and necessary quantum information concepts, many of which have themselves developed into independent, rapidly evolving research fields.
We introduce a new functional to estimate the producibility of mixed quantum states. When applicable, this functional outperforms the quantum Fisher information, and can be operatively exploited to characterize quantum states and phases by multiparti te entanglement. The rationale is that producibility is expressible in terms of one- and two-point correlation functions only. This is especially valuable whenever the experimental measurements and the numerical simulation of other estimators result to be difficult, if not out of reach. We trace the theoretical usability perimeter of the new estimator and provide simulational evidence of paradigmatic spin examples.
We consider a class of holographic tensor networks that are efficiently contractible variational ansatze, manifestly (approximate) quantum error correction codes, and can support power-law correlation functions. In the case when the network consists of a single type of tensor that also acts as an erasure correction code, we show that it cannot be both locally contractible and sustain power-law correlation functions. Motivated by this no-go theorem, and the desirability of local contractibility for an efficient variational ansatz, we provide guidelines for constructing networks consisting of multiple types of tensors that can support power-law correlation. We also provide an explicit construction of one such network, which approximates the holographic HaPPY pentagon code in the limit where variational parameters are taken to be small.
Local constraints play an important role in the effective description of many quantum systems. Their impact on dynamics and entanglement thermalization are just beginning to be unravelled. We develop a large $N$ diagrammatic formalism to exactly eval uate the bipartite entanglement of random pure states in large constrained Hilbert spaces. The resulting entanglement spectra may be classified into `phases depending on their singularities. Our closed solution for the spectra in the simplest class of constraints reveals a non-trivial phase diagram with a Marchenko-Pastur (MP) phase which terminates in a critical point with new singularities. The much studied Rydberg-blockaded/Fibonacci chain lies in the MP phase with a modified Page correction to the entanglement entropy, $Delta S_1 = 0.513595cdots$. Our results predict the entanglement of infinite temperature eigenstates in thermalizing constrained systems and provide a baseline for numerical studies.
137 - Anindya Biswas , Aditi Sen De , 2013
Fidelity plays an important role in measuring distances between pairs of quantum states, of single as well as multiparty systems. Based on the concept of fidelity, we introduce a physical quantity, shared purity, for arbitrary pure or mixed quantum s tates of shared systems of an arbitrary number of parties in arbitrary dimensions. We find that it is different from quantum correlations. However, we prove that a maximal shared purity between two parties excludes any shared purity of these parties with a third party, thus ensuring its quantum nature. Moreover, we show that all generalized GHZ states are monogamous, while all generalized W states are non-monogamous with respect to this measure. We apply the quantity to investigate the quantum XY spin models, and observe that it can faithfully detect the quantum phase transition present in these models. We perform a finite-size scaling analysis and find the scaling exponent for this quantity.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا