ﻻ يوجد ملخص باللغة العربية
We present the closed loop approach to linear nonequilibrium thermodynamics considering a generic heat engine dissipatively connected to two temperature baths. The system is usually quite generally characterized by two parameters: the output power $P$ and the conversion efficiency $eta$, to which we add a third one, the working frequency $omega$. We establish that a detailed understanding of the effects of the dissipative coupling on the energy conversion process, necessitates the knowledge of only two quantities: the systems feedback factor $beta$ and its open-loop gain $A_{0}$, the product of which, $A_{0}beta$, characterizes the interplay between the efficiency, the output power and the operating rate of the system. By placing thermodynamics analysis on a higher level of abstraction, the feedback loop approach provides a versatile and economical, hence a very efficient, tool for the study of emph{any} conversion engine operation for which a feedback factor may be defined.
We develop the stochastic approach to thermodynamics based on the stochastic dynamics, which can be discrete (master equation) continuous (Fokker-Planck equation), and on two assumptions concerning entropy. The first is the definition of entropy itse
The standard formulation of thermostatistics, being based on the Boltzmann-Gibbs distribution and logarithmic Shannon entropy, describes idealized uncorrelated systems with extensive energies and short-range interactions. In this letter, we use the f
A theoretical framework is developed for the phenomenon of non-Gaussian normal diffusion that has experimentally been observed in several heterogeneous systems. From the Fokker-Planck equation with the dynamical structure with largely separated time
Non-equilibrium processes in Schottky systems generate by projection onto the equilibrium subspace reversible accompanying processes for which the non-equilibrium variables are functions of the equilibrium ones. The embedding theorem which guarantees
State functions play important roles in thermodynamics. Different from the process function, such as the exchanged heat $delta Q$ and the applied work $delta W$, the change of the state function can be expressed as an exact differential. We prove her