ﻻ يوجد ملخص باللغة العربية
This paper connects a vector-based composition model to a formal semantics, the Dependency-based Compositional Semantics (DCS). We show theoretical evidence that the vector compositions in our model conform to the logic of DCS. Experimentally, we show that vector-based composition brings a strong ability to calculate similar phrases as similar vectors, achieving near state-of-the-art on a wide range of phrase similarity tasks and relation classification; meanwhile, DCS can guide building vectors for structured queries that can be directly executed. We evaluate this utility on sentence completion task and report a new state-of-the-art.
We propose a framework to model an operational conversational negation by applying worldly context (prior knowledge) to logical negation in compositional distributional semantics. Given a word, our framework can create its negation that is similar to
This thesis is about the problem of compositionality in distributional semantics. Distributional semantics presupposes that the meanings of words are a function of their occurrences in textual contexts. It models words as distributions over these con
In traditional Distributional Semantic Models (DSMs) the multiple senses of a polysemous word are conflated into a single vector space representation. In this work, we propose a DSM that learns multiple distributional representations of a word based
Categorical compositional distributional semantics provide a method to derive the meaning of a sentence from the meaning of its individual words: the grammatical reduction of a sentence automatically induces a linear map for composing the word vector
Word embeddings (e.g., word2vec) have been applied successfully to eCommerce products through~textit{prod2vec}. Inspired by the recent performance improvements on several NLP tasks brought by contextualized embeddings, we propose to transfer BERT-lik