ترغب بنشر مسار تعليمي؟ اضغط هنا

On the average size of independent sets in triangle-free graphs

169   0   0.0 ( 0 )
 نشر من قبل Will Perkins
 تاريخ النشر 2016
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We prove an asymptotically tight lower bound on the average size of independent sets in a triangle-free graph on $n$ vertices with maximum degree $d$, showing that an independent set drawn uniformly at random from such a graph has expected size at least $(1+o_d(1)) frac{log d}{d}n$. This gives an alternative proof of Shearers upper bound on the Ramsey number $R(3,k)$. We then prove that the total number of independent sets in a triangle-free graph with maximum degree $d$ is at least $exp left[left(frac{1}{2}+o_d(1) right) frac{log^2 d}{d}n right]$. The constant $1/2$ in the exponent is best possible. In both cases, tightness is exhibited by a random $d$-regular graph. Both results come from considering the hard-core model from statistical physics: a random independent set $I$ drawn from a graph with probability proportional to $lambda^{|I|}$, for a fugacity parameter $lambda>0$. We prove a general lower bound on the occupancy fraction (normalized expected size of the random independent set) of the hard-core model on triangle-free graphs of maximum degree $d$. The bound is asymptotically tight in $d$ for all $lambda =O_d(1)$. We conclude by stating several conjectures on the relationship between the average and maximum size of an independent set in a triangle-free graph and give some consequences of these conjectures in Ramsey theory.



قيم البحث

اقرأ أيضاً

93 - Xiaoyu He , Jiaxi Nie , Sam Spiro 2021
Nielsen proved that the maximum number of maximal independent sets (MISs) of size $k$ in an $n$-vertex graph is asymptotic to $(n/k)^k$, with the extremal construction a disjoint union of $k$ cliques with sizes as close to $n/k$ as possible. In this paper we study how many MISs of size $k$ an $n$-vertex graph $G$ can have if $G$ does not contain a clique $K_t$. We prove for all fixed $k$ and $t$ that there exist such graphs with $n^{lfloorfrac{(t-2)k}{t-1}rfloor-o(1)}$ MISs of size $k$ by utilizing recent work of Gowers and B. Janzer on a generalization of the Ruzsa-Szemeredi problem. We prove that this bound is essentially best possible for triangle-free graphs when $kle 4$.
For all $nge 9$, we show that the only triangle-free graphs on $n$ vertices maximizing the number $5$-cycles are balanced blow-ups of a 5-cycle. This completely resolves a conjecture by ErdH{o}s, and extends results by Grzesik and Hatami, Hladky, Kr{ a}l, Norin and Razborov, where they independently showed this same result for large $n$ and for all $n$ divisible by $5$.
In this paper, we consider the average size of independent edge sets, also called matchings, in a graph. We characterize the extremal graphs for the average size of matchings in general graphs and trees. In addition, we obtain inequalities between th e average size of matchings and the number of matchings as well as the matching energy, which is defined as the sum of the absolute values of the zeros of the matching polynomial.
Given a graph $G=(V,E)$ whose vertices have been properly coloured, we say that a path in $G$ is colourful if no two vertices in the path have the same colour. It is a corollary of the Gallai-Roy-Vitaver Theorem that every properly coloured graph con tains a colourful path on $chi(G)$ vertices. We explore a conjecture that states that every properly coloured triangle-free graph $G$ contains an induced colourful path on $chi(G)$ vertices and prove its correctness when the girth of $G$ is at least $chi(G)$. Recent work on this conjecture by Gyarfas and Sarkozy, and Scott and Seymour has shown the existence of a function $f$ such that if $chi(G)geq f(k)$, then an induced colourful path on $k$ vertices is guaranteed to exist in any properly coloured triangle-free graph $G$.
An orientation of a graph is semi-transitive if it is acyclic, and for any directed path $v_0rightarrow v_1rightarrow cdotsrightarrow v_k$ either there is no arc between $v_0$ and $v_k$, or $v_irightarrow v_j$ is an arc for all $0leq i<jleq k$. An un directed graph is semi-transitive if it admits a semi-transitive orientation. Semi-transitive graphs generalize several important classes of graphs and they are precisely the class of word-representable graphs studied extensively in the literature. Determining if a triangle-free graph is semi-transitive is an NP-hard problem. The existence of non-semi-transitive triangle-free graphs was established via ErdH{o}s theorem by Halld{o}rsson and the authors in 2011. However, no explicit examples of such graphs were known until recent work of the first author and Saito who have shown computationally that a certain subgraph on 16 vertices of the triangle-free Kneser graph $K(8,3)$ is not semi-transitive, and have raised the question on the existence of smaller triangle-free non-semi-transitive graphs. In this paper we prove that the smallest triangle-free 4-chromatic graph on 11 vertices (the Grotzsch graph) and the smallest triangle-free 4-chromatic 4-regular graph on 12 vertices (the Chvatal graph) are not semi-transitive. Hence, the Grotzsch graph is the smallest triangle-free non-semi-transitive graph. We also prove the existence of semi-transitive graphs of girth 4 with chromatic number 4 including a small one (the circulant graph $C(13;1,5)$ on 13 vertices) and dense ones (Tofts graphs). Finally, we show that each $4$-regular circulant graph (possibly containing triangles) is semi-transitive.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا