ﻻ يوجد ملخص باللغة العربية
Two dimensional electron gases (2DEGs) at surfaces and interfaces of semiconductors are described straightforwardly with a 1D self-consistent Poisson-Schr{o}dinger scheme. However, their band energies have not been modeled correctly in this way. Using angle-resolved photoelectron spectroscopy we study the band structures of 2DEGs formed at sulfur-passivated surfaces of InAs(001) as a model system. Electronic properties of these surfaces are tuned by changing the S coverage, while keeping a high-quality interface, free of defects and with a constant doping density. In contrast to earlier studies we show that the Poisson-Schr{o}dinger scheme predicts the 2DEG bands energies correctly but it is indispensable to take into account the existence of the physical surface. The surface substantially influences the band energies beyond simple electrostatics, by setting nontrivial boundary conditions for 2DEG wavefunctions.
In this work, we find by means of first principle calculations a new physical mechanism to generate a two dimensional electron gas, namely, the breaking of charge ordering at the surface of a charge ordered semiconductor due to the incomplete oxygen
A giant asymmetry in the magnetoresistance was revealed in high-mobility, two-dimensional electron gas on a cylindrical surface. The longitudinal resistance along the magnetic-field gradient impressed by the surface curvature was found to vanish if m
Similar to silicon that is the basis of conventional electronics, strontium titanate (SrTiO3) is the bedrock of the emerging field of oxide electronics. SrTiO3 is the preferred template to create exotic two-dimensional (2D) phases of electron matter
Studies on oxide quasi-two dimensional electron gas (q2DEG) have been a playground for the discovery of novel and sometimes unexpected phenomena, like the reported magnetism at the surface and at the interface between LaAlO$_{3}$ and SrTiO$_{3}$ non-
We provide a theoretical framework for the electric field control of the electron spin in systems with diffusive electron motion. The approach is valid in the experimentally important case where both intrinsic and extrinsic spin-orbit interaction in