ترغب بنشر مسار تعليمي؟ اضغط هنا

Radiative feedback and cosmic molecular gas: the role of different radiative sources

87   0   0.0 ( 0 )
 نشر من قبل Umberto Maio PhD
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present results from multifrequency radiative hydrodynamical chemistry simulations addressing primordial star formation and related stellar feedback from various populations of stars, stellar energy distributions (SEDs) and initial mass functions. Spectra for massive stars, intermediate-mass stars and regular solar-like stars are adopted over a grid of 150 frequency bins and consistently coupled with hydrodynamics, heavy-element pollution and non-equilibrium species calculations. Powerful massive population III stars are found to be able to largely ionize H and, subsequently, He and He$^+$, causing an inversion of the equation of state and a boost of the Jeans masses in the early intergalactic medium. Radiative effects on star formation rates are between a factor of a few and 1 dex, depending on the SED. Radiative processes are responsible for gas heating and photoevaporation, although emission from soft SEDs has minor impacts. These findings have implications for cosmic gas preheating, primordial direct-collapse black holes, the build-up of cosmic fossils such as low-mass dwarf galaxies, the role of AGNi during reionization, the early formation of extended disks and angular-momentum catastrophe.



قيم البحث

اقرأ أيضاً

128 - Huanqing Chen 2019
Recent observations have found that many $zsim 6$ quasar fields lack galaxies. This unexpected lack of galaxies may potentially be explained by quasar radiation feedback. In this paper I present a suite of 3D radiative transfer cosmological simulatio ns of quasar fields. I find that quasar radiation suppresses star formation in low mass galaxies, mainly by photo-dissociating their molecular hydrogen. Photo-heating also plays a role, but only after $sim$100 Myr. However, galaxies which already have stellar mass above $10^5 M_odot$ when the quasar turns on will not be suppressed significantly. Quasar radiative feedback suppresses the faint end of the galaxy luminosity function (LF) within $1$ pMpc, but to a far lesser degree than the field-to-field variation of the LF. My study also suggests that by using the number of bright galaxies ($M_{1500}<-16$) around quasars, we can potentially recover the underlying mass overdensity, which allows us to put reliable constraints on quasar environments.
Radiative feedback (RFB) from stars plays a key role in galaxies, but remains poorly-understood. We explore this using high-resolution, multi-frequency radiation-hydrodynamics (RHD) simulations from the Feedback In Realistic Environments (FIRE) proje ct. We study ultra-faint dwarf through Milky Way mass scales, including H+He photo-ionization; photo-electric, Lyman Werner, Compton, and dust heating; and single+multiple scattering radiation pressure (RP). We compare distinct numerical algorithms: ray-based LEBRON (exact when optically-thin) and moments-based M1 (exact when optically-thick). The most important RFB channels on galaxy scales are photo-ionization heating and single-scattering RP: in all galaxies, most ionizing/far-UV luminosity (~1/2 of lifetime-integrated bolometric) is absorbed. In dwarfs, the most important effect is photo-ionization heating from the UV background suppressing accretion. In MW-mass galaxies, meta-galactic backgrounds have negligible effects; but local photo-ionization and single-scattering RP contribute to regulating the galactic star formation efficiency and lowering central densities. Without some RFB (or other rapid FB), resolved GMCs convert too-efficiently into stars, making galaxies dominated by hyper-dense, bound star clusters. This makes star formation more violent and bursty when SNe explode in these hyper-clustered objects: thus, including RFB smoothes SFHs. These conclusions are robust to RHD methods, but M1 produces somewhat stronger effects. Like in previous FIRE simulations, IR multiple-scattering is rare (negligible in dwarfs, ~10% of RP in massive galaxies): absorption occurs primarily in normal GMCs with A_v~1.
189 - Philip F. Hopkins 2012
We show that the mass fraction of GMC gas (n>100 cm^-3) in dense (n>>10^4 cm^-3) star-forming clumps, observable in dense molecular tracers (L_HCN/L_CO(1-0)), is a sensitive probe of the strength and mechanism(s) of stellar feedback. Using high-resol ution galaxy-scale simulations with pc-scale resolution and explicit models for feedback from radiation pressure, photoionization heating, stellar winds, and supernovae (SNe), we make predictions for the dense molecular gas tracers as a function of GMC and galaxy properties and the efficiency of stellar feedback. In models with weak/no feedback, much of the mass in GMCs collapses into dense sub-units, predicting L_HCN/L_CO(1-0) ratios order-of-magnitude larger than observed. By contrast, models with feedback properties taken directly from stellar evolution calculations predict dense gas tracers in good agreement with observations. Changing the strength or timing of SNe tends to move systems along, rather than off, the L_HCN-L_CO relation (because SNe heat lower-density material, not the high-density gas). Changing the strength of radiation pressure (which acts efficiently in the highest density gas), however, has a much stronger effect on L_HCN than on L_CO. We predict that the fraction of dense gas (L_HCN/L_CO(1-0)) increases with increasing GMC surface density; this drives a trend in L_HCN/L_CO(1-0) with SFR and luminosity which has tentatively been observed. Our results make specific predictions for enhancements in the dense gas tracers in unusually dense environments such as ULIRGs and galactic nuclei (including the galactic center).
Here we introduce GAMESH, a novel pipeline which implements self-consistent radiative and chemical feedback in a computational model of galaxy formation. By combining the cosmological chemical-evolution model GAMETE with the radiative transfer code C RASH, GAMESH can post process realistic outputs of a N-body simulation describing the redshift evolution of the forming galaxy. After introducing the GAMESH implementation and its features, we apply the code to a low-resolution N-body simulation of the Milky Way formation and we investigate the combined effects of self-consistent radiative and chemical feedback. Many physical properties, which can be directly compared with observations in the Galaxy and its surrounding satellites, are predicted by the code along the merger-tree assembly. The resulting redshift evolution of the Local Group star formation rates, reionisation and metal enrichment along with the predicted Metallicity Distribution Function of halo stars are critically compared with observations. We discuss the merits and limitations of the first release of GAMESH, also opening new directions to a full implementation of feedback processes in galaxy formation models by combining semi-analytic and numerical methods.
201 - Yu Qiu , Yuan Li (2 2018
Recent observations provide evidence that some cool-core clusters (CCCs) host quasars in their brightest cluster galaxies (BCGs). Motivated by these findings we use 3D radiation-hydrodynamic simulations with the code Enzo to explore the joint role of the kinetic and radiative feedback from supermassive black holes (SMBHs) in BCGs. We implement kinetic feedback as sub-relativistic plasma outflows and model radiative feedback using the ray-tracing radiative transfer or thermal energy injection. In our simulations the central SMBH transitions between the radiatively efficient and radiatively inefficient states on timescales of a few Gyr, as a function of its accretion rate. The timescale for this transition depends primarily on the fraction of power allocated to each feedback mode, and to a lesser degree on the overall feedback luminosity of the active galactic nucleus (AGN). Specifically, we find that (a) kinetic feedback must be present at both low and high accretion rates in order to prevent the cooling catastrophe, and (b) its contribution likely accounts for > 10% of the total AGN feedback power, since below this threshold simulated BCGs tend to host radio-loud quasars most of the time, in apparent contrast with observations. We also find a positive correlation between the AGN feedback power and the mass of the cold gas filaments in the cluster core, indicating that observations of H$alpha$ filaments can be used as a measure of AGN feedback.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا