ترغب بنشر مسار تعليمي؟ اضغط هنا

Galaxy formation with radiative and chemical feedback

167   0   0.0 ( 0 )
 نشر من قبل Luca Graziani
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Here we introduce GAMESH, a novel pipeline which implements self-consistent radiative and chemical feedback in a computational model of galaxy formation. By combining the cosmological chemical-evolution model GAMETE with the radiative transfer code CRASH, GAMESH can post process realistic outputs of a N-body simulation describing the redshift evolution of the forming galaxy. After introducing the GAMESH implementation and its features, we apply the code to a low-resolution N-body simulation of the Milky Way formation and we investigate the combined effects of self-consistent radiative and chemical feedback. Many physical properties, which can be directly compared with observations in the Galaxy and its surrounding satellites, are predicted by the code along the merger-tree assembly. The resulting redshift evolution of the Local Group star formation rates, reionisation and metal enrichment along with the predicted Metallicity Distribution Function of halo stars are critically compared with observations. We discuss the merits and limitations of the first release of GAMESH, also opening new directions to a full implementation of feedback processes in galaxy formation models by combining semi-analytic and numerical methods.



قيم البحث

اقرأ أيضاً

Radiative feedback (RFB) from stars plays a key role in galaxies, but remains poorly-understood. We explore this using high-resolution, multi-frequency radiation-hydrodynamics (RHD) simulations from the Feedback In Realistic Environments (FIRE) proje ct. We study ultra-faint dwarf through Milky Way mass scales, including H+He photo-ionization; photo-electric, Lyman Werner, Compton, and dust heating; and single+multiple scattering radiation pressure (RP). We compare distinct numerical algorithms: ray-based LEBRON (exact when optically-thin) and moments-based M1 (exact when optically-thick). The most important RFB channels on galaxy scales are photo-ionization heating and single-scattering RP: in all galaxies, most ionizing/far-UV luminosity (~1/2 of lifetime-integrated bolometric) is absorbed. In dwarfs, the most important effect is photo-ionization heating from the UV background suppressing accretion. In MW-mass galaxies, meta-galactic backgrounds have negligible effects; but local photo-ionization and single-scattering RP contribute to regulating the galactic star formation efficiency and lowering central densities. Without some RFB (or other rapid FB), resolved GMCs convert too-efficiently into stars, making galaxies dominated by hyper-dense, bound star clusters. This makes star formation more violent and bursty when SNe explode in these hyper-clustered objects: thus, including RFB smoothes SFHs. These conclusions are robust to RHD methods, but M1 produces somewhat stronger effects. Like in previous FIRE simulations, IR multiple-scattering is rare (negligible in dwarfs, ~10% of RP in massive galaxies): absorption occurs primarily in normal GMCs with A_v~1.
128 - Huanqing Chen 2019
Recent observations have found that many $zsim 6$ quasar fields lack galaxies. This unexpected lack of galaxies may potentially be explained by quasar radiation feedback. In this paper I present a suite of 3D radiative transfer cosmological simulatio ns of quasar fields. I find that quasar radiation suppresses star formation in low mass galaxies, mainly by photo-dissociating their molecular hydrogen. Photo-heating also plays a role, but only after $sim$100 Myr. However, galaxies which already have stellar mass above $10^5 M_odot$ when the quasar turns on will not be suppressed significantly. Quasar radiative feedback suppresses the faint end of the galaxy luminosity function (LF) within $1$ pMpc, but to a far lesser degree than the field-to-field variation of the LF. My study also suggests that by using the number of bright galaxies ($M_{1500}<-16$) around quasars, we can potentially recover the underlying mass overdensity, which allows us to put reliable constraints on quasar environments.
We present a first study of the effect of local photoionising radiation on gas cooling in smoothed particle hydrodynamics simulations of galaxy formation. We explore the combined effect of ionising radiation from young and old stellar populations. Th e method computes the effect of multiple radiative sources using the same tree algorithm used for gravity, so it is computationally efficient and well resolved. The method foregoes calculating absorption and scattering in favour of a constant escape fraction for young stars to keep the calculation efficient enough to simulate the entire evolution of a galaxy in a cosmological context to the present day. This allows us to quantify the effect of the local photoionisation feedback through the whole history of a galaxy`s formation. The simulation of a Milky Way like galaxy using the local photoionisation model forms ~ 40 % less stars than a simulation that only includes a standard uniform background UV field. The local photoionisation model decreases star formation by increasing the cooling time of the gas in the halo and increasing the equilibrium temperature of dense gas in the disc. Coupling the local radiation field to gas cooling from the halo provides a preventive feedback mechanism which keeps the central disc light and produces slowly rising rotation curves without resorting to extreme feedback mechanisms. These preliminary results indicate that the effect of local photoionising sources is significant and should not be ignored in models of galaxy formation.
201 - Yu Qiu , Yuan Li (2 2018
Recent observations provide evidence that some cool-core clusters (CCCs) host quasars in their brightest cluster galaxies (BCGs). Motivated by these findings we use 3D radiation-hydrodynamic simulations with the code Enzo to explore the joint role of the kinetic and radiative feedback from supermassive black holes (SMBHs) in BCGs. We implement kinetic feedback as sub-relativistic plasma outflows and model radiative feedback using the ray-tracing radiative transfer or thermal energy injection. In our simulations the central SMBH transitions between the radiatively efficient and radiatively inefficient states on timescales of a few Gyr, as a function of its accretion rate. The timescale for this transition depends primarily on the fraction of power allocated to each feedback mode, and to a lesser degree on the overall feedback luminosity of the active galactic nucleus (AGN). Specifically, we find that (a) kinetic feedback must be present at both low and high accretion rates in order to prevent the cooling catastrophe, and (b) its contribution likely accounts for > 10% of the total AGN feedback power, since below this threshold simulated BCGs tend to host radio-loud quasars most of the time, in apparent contrast with observations. We also find a positive correlation between the AGN feedback power and the mass of the cold gas filaments in the cluster core, indicating that observations of H$alpha$ filaments can be used as a measure of AGN feedback.
Cosmological simulations of galaxies have typically produced too many stars at early times. We study the global and morphological effects of radiation pressure (RP) in eight pairs of high-resolution cosmological galaxy formation simulations. We find that the additional feedback suppresses star formation globally by a factor of ~2. Despite this reduction, the simulations still overproduce stars by a factor of ~2 with respect to the predictions provided by abundance matching methods for halos more massive than 5E11 Msun/h (Behroozi, Wechsler & Conroy 2013). We also study the morphological impact of radiation pressure on our simulations. In simulations with RP the average number of low mass clumps falls dramatically. Only clumps with stellar masses Mclump/Mdisk <= 5% are impacted by the inclusion of RP, and RP and no-RP clump counts above this range are comparable. The inclusion of RP depresses the contrast ratios of clumps by factors of a few for clump masses less than 5% of the disk masses. For more massive clumps, the differences between and RP and no-RP simulations diminish. We note however, that the simulations analyzed have disk stellar masses below about 2E10 Msun/h. By creating mock Hubble Space Telescope observations we find that the number of clumps is slightly reduced in simulations with RP. However, since massive clumps survive the inclusion of RP and are found in our mock observations, we do not find a disagreement between simulations of our clumpy galaxies and observations of clumpy galaxies. We demonstrate that clumps found in any single gas, stellar, or mock observation image are not necessarily clumps found in another map, and that there are few clumps common to multiple maps.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا