ترغب بنشر مسار تعليمي؟ اضغط هنا

Hadronization conditions in relativistic nuclear collisions and the QCD pseudo-critical line

57   0   0.0 ( 0 )
 نشر من قبل Francesco Becattini
 تاريخ النشر 2016
  مجال البحث
والبحث باللغة English
 تأليف F. Becattini




اسأل ChatGPT حول البحث

We compare the reconstructed hadronization conditions in relativistic nuclear collisions in the nucleon-nucleon centre-of-mass energy range 4.7-2760 GeV in terms of temperature and baryon-chemical potential with lattice QCD calculations, by using hadronic multiplicities. We obtain hadronization temperatures and baryon chemical potentials with a fit to measured multiplicities by correcting for the effect of post-hadronization rescattering. The post-hadronization modification factors are calculated by means of a coupled hydrodynamical-transport model simulation under the same conditions of approximate isothermal and isochemical decoupling as assumed in the statistical hadronization model fits to the data. The fit quality is considerably better than without rescattering corrections, as already found in previous work. The curvature of the obtained true hadronization pseudo-critical line kappa is found to be 0.0048 +- 0.0026, in agreement with lattice QCD estimates; the pseudo-critical temperature at vanishing mu_B is found to be 164.3+-1.8 MeV.



قيم البحث

اقرأ أيضاً

A systematic search for a critical point in the phase diagram of QCD matter is underway at the Relativistic Heavy Ion Collider (RHIC) and is planned at several future facilities. Its existence, if confirmed, and its location will greatly enhance our understanding of QCD. In this note we emphasize several important issues that are often not fully recognized in theoretical interpretations of experimental results relevant to the critical point search. We discuss ways in which our understanding on these issues can be improved.
We summarize our current understanding of the connection between the QCD phase line and the chemical freeze-out curve as deduced from thermal analyses of yields of particles produced in central collisions between relativistic nuclei.
236 - Jorgen Randrup 2010
The spinodal amplification of density fluctuations is treated perturbatively within dissipative fluid dynamics for the purpose of elucidating the prospects for this mechanism to cause a phase separation to occur during a relativistic nuclear collisio n. The present study includes not only viscosity but also heat conduction (whose effect on the growth rates is of comparable magnitude but opposite), as well as a gradient term in the local pressure, and the corresponding dispersion relation for collective modes in bulk matter is derived from relativistic fluid dynamics. A suitable two-phase equation of state is obtained by interpolation between a hadronic gas and a quark-gluon plasma, while the transport coefficients are approximated by simple parametrizations that are suitable at any degree of net baryon density. We calculate the degree of spinodal amplification occurring along specific dynamical phase trajectories characteristic of nuclear collision at various energies. The results bring out the important fact that the prospects for spinodal phase separation to occur can be greatly enhanced by careful tuning of the collision energy to ensure that the thermodynamic conditions associated with the maximum compression lie inside the region of spinodal instability.
147 - Yu. B. Ivanov 2020
Predictions for the global polarization of $Lambda$ hyperons in Au+Au collisions at moderately relativistic collision energies, 2.4 $leqsqrt{s_{NN}}leq$ 11 GeV, are made. These are based on the thermodynamic approach to the global polarization incorp orated into the model of the three-fluid dynamics. Centrality dependence of the polarization is studied. It is predicted that the polarization reaches a maximum or a plateau (depending on the equation of state and centrality) at $sqrt{s_{NN}}approx$ 3 GeV. It is found that the global polarization increases with increasing width of the rapidity window around the midrapidity.
93 - P. Braun-Munzinger 2004
In nucleus-nucleus collisions at ultra-relativistic energies matter is formed with initial energy density significantly exceeding the critical energy density for the transition from hadronic to partonic matter. We will review the experimental evidenc e for this new form of matter - the Quark-Gluon Plasma - from recent experiments at the SPS and RHIC with emphasis on collective behavior, thermalization, and its opacity for fast partons. We will further show that one can determine from the data a fundamental QCD parameter, the critical temperature for the QCD phase transition.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا