ترغب بنشر مسار تعليمي؟ اضغط هنا

Global $Lambda$ polarization in moderately relativistic nuclear collisions

148   0   0.0 ( 0 )
 نشر من قبل Yuri B. Ivanov
 تاريخ النشر 2020
  مجال البحث
والبحث باللغة English
 تأليف Yu. B. Ivanov




اسأل ChatGPT حول البحث

Predictions for the global polarization of $Lambda$ hyperons in Au+Au collisions at moderately relativistic collision energies, 2.4 $leqsqrt{s_{NN}}leq$ 11 GeV, are made. These are based on the thermodynamic approach to the global polarization incorporated into the model of the three-fluid dynamics. Centrality dependence of the polarization is studied. It is predicted that the polarization reaches a maximum or a plateau (depending on the equation of state and centrality) at $sqrt{s_{NN}}approx$ 3 GeV. It is found that the global polarization increases with increasing width of the rapidity window around the midrapidity.



قيم البحث

اقرأ أيضاً

We investigate the two-particle intensity correlation function of $Lambda$ in relativistic heavy-ion collisions. We find that the behavior of the $LambdaLambda$ correlation function at small relative momenta is fairly sensitive to the interaction pot ential and collective flows. By comparing the results of different source functions and potentials, we explore the effect of intrinsic collective motions on the correlation function. We find that the recent STAR data gives a strong constraint on the scattering length and effective range of $LambdaLambda$ interaction as, $-1.8 mathrm{fm}^{-1} < 1/a_0 < -0.8 mathrm{fm}^{-1}$ and $3.5 mathrm{fm} < r_mathrm{eff} < 7 mathrm{fm}$, respectively,if $Lambda$ samples do not include feed-down contribution from long-lived particles. We find that feed-down correction for $Sigma^0$ decay reduces the sensitivity of the correlation function to the detail of the $LambdaLambda$ interaction. As a result, we obtain a weaker constraint $1/a_0 <-0.8$ fm$^{-1}$. Implication for the signal of existence of $H$-dibaryon is discussed. Comparison with the scattering parameters obtained from the double $Lambda$ hypernucleus may reveal in-medium effects in the $LambdaLambda$ interaction.
The polarization of $Lambda$ hyperons from relativistic flow vorticity is studied in peripheral heavy ion reactions at FAIR and NICA energies, just above the threshold of the transition to the Quark-Gluon Plasma. Previous calculations at higher energ ies with larger initial angular momentum, predicted significant $Lambda$ polarization based on the classical vorticity term in the polarization, while relativistic modifications decreased the polarization and changed its structure in the momentum space. At the lower energies studied here, we see the same effect namely that the relativistic modifications decrease the polarization arising from the initial shear flow vorticity.
172 - Iu. Karpenko 2016
We present a calculation of the global polarization of Lambda hyperons in relativistic Au-Au collisions at RHIC Beam Energy Scan range sqrt{s}_NN = 7.7 - 200 GeV with a 3+1 dimensional cascade + viscous hydro + cascade model, UrQMD+vHLLE. Within this model, the mean polarization of Lambda in the out-of-plane direction is predicted to decrease rapidly with collision energy from a top value of about 2% at the lowest energy examined. We explore the connection between the polarization signal and thermal vorticity and estimate the feed-down contribution to Lambda polarization due to the decay of higher mass hyperons.
78 - Yilong Xie , Dujuan Wang , 2017
With a Yang-Mills flux-tube initial state and a high resolution (3+1)D Particle-in-Cell Relativistic (PICR) hydrodynamics simulation, we calculate the $Lambda$ polarization for different energies. The origination of polarization in high energy collis ions is discussed, and we find linear impact parameter dependence of the global $Lambda$ polarization. Furthermore, the global $Lambda$ polarization in our model decreases very fast in the low energy domain, and the decline curve fits well the recent results of Beam Energy Scan (BES) program launched by the STAR collaboration at the Relativistic Heavy Ion Collider (RHIC). The time evolution of polarization is also discussed.
190 - F. Becattini 2019
We calculate the contribution to the polarization of $Lambda$ hyperons in relativistic nuclear collisions at high energy from the decays of $Sigma^*(1385)$ and $Sigma^0$, which are the predominant sources of $Lambda$ production besides the primary co mponent, as a function of the $Lambda$ momentum. Particularly, we estimate the longitudinal component of the mean spin vector as a function of the azimuthal angle in the transverse plane, assuming that primary $Sigma^*$ and $Sigma^0$ polarization follow the predictions of local thermodynamic equilibrium in a relativistic fluid. Provided that the rapidity dependence around midrapidity of polarization is negligible, we find that this component of the overall spin vector has a very similar pattern to the primary one. Therefore, we conclude that the secondary decays cannot account for the discrepancy in sign between experimental data and hydrodynamic model predictions of the longitudinal polarization of $Lambda$ hyperons recently measured by the STAR experiment at RHIC.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا