ترغب بنشر مسار تعليمي؟ اضغط هنا

The two-dimensional Jacobian conjecture and the lower side of the Newton polygon

61   0   0.0 ( 0 )
 نشر من قبل Jorge Alberto Guccione
 تاريخ النشر 2016
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We prove that if the Jacobian Conjecture in two variables is false and (P,Q) is a standard minimal pair, then the Newton polygon HH(P) of P must satisfy several restrictions that had not been found previously. This allows us to discard some of the corners found in [GGV, Remark 7.14] for HH(P), together with some of the infinite families found in [H, Theorem~2.25]



قيم البحث

اقرأ أيضاً

121 - Susumu Oda 2003
Let S be a polynomial ring over a field of characteristic zero in finitely may variables. Let T be an unramified, finitely generated extension of S with $T^times = k^times$. Then T = S.
We describe an algorithm that computes possible corners of hypothetical counterexamples to the Jacobian Conjecture up to a given bound. Using this algorithm we compute the possible families corresponding to $gcd(deg(P),deg(Q))le 35$, and all the pair s $(deg(P),deg(Q))$ with $max(deg(P),deg(Q))le 150$ for any hypothetical counterexample.
61 - Michiel de Bondt 2016
Let $K$ be any field and $x = (x_1,x_2,ldots,x_n)$. We classify all matrices $M in {rm Mat}_{m,n}(K[x])$ whose entries are polynomials of degree at most 1, for which ${rm rk} M le 2$. As a special case, we describe all such matrices $M$, which are th e Jacobian matrix $J H$ (the matrix of partial derivatives) of a polynomial map $H$ from $K^n$ to $K^m$. Among other things, we show that up to composition with linear maps over $K$, $M = J H$ has only two nonzero columns or only three nonzero rows in this case. In addition, we show that ${rm trdeg}_K K(H) = {rm rk} J H$ for quadratic polynomial maps $H$ over $K$ such that $frac12 in K$ and ${rm rk} J H le 2$. Furthermore, we prove that up to conjugation with linear maps over $K$, nilpotent Jacobian matrices $N$ of quadratic polynomial maps, for which ${rm rk} N le 2$, are triangular (with zeroes on the diagonal), regardless of the characteristic of $K$. This generalizes several results by others. In addition, we prove the same result for Jacobian matrices $N$ of quadratic polynomial maps, for which $N^2 = 0$. This generalizes a result by others, namely the case where $frac12 in K$ and $N(0) = 0$.
63 - Adrian Tanasa 2020
In this short review we first recall combinatorial or ($0-$dimensional) quantum field theory (QFT). We then give the main idea of a standard QFT method, called the intermediate field method, and we review how to apply this method to a combinatorial Q FT reformulation of the celebrated Jacobian conjecture on the invertibility of polynomial systems. This approach establishes a related theorem concerning partial elimination of variables that implies a reduction of the generic case to the quadratic one. Note that this does not imply solving the Jacobian conjecture, because one needs to introduce a supplementary parameter for the dimension of a certain linear subspace where the system holds.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا