ﻻ يوجد ملخص باللغة العربية
In this short review we first recall combinatorial or ($0-$dimensional) quantum field theory (QFT). We then give the main idea of a standard QFT method, called the intermediate field method, and we review how to apply this method to a combinatorial QFT reformulation of the celebrated Jacobian conjecture on the invertibility of polynomial systems. This approach establishes a related theorem concerning partial elimination of variables that implies a reduction of the generic case to the quadratic one. Note that this does not imply solving the Jacobian conjecture, because one needs to introduce a supplementary parameter for the dimension of a certain linear subspace where the system holds.
This article has been withdrown by the author.
We describe an algebra G of diagrams which faithfully gives a diagrammatic representation of the structures of both the Heisenberg-Weyl algebra H - the associative algebra of the creation and annihilation operators of quantum mechanics - and U(L_H),
It is known that there are 48 Virasoro algebras acting on the monster conformal field theory. We call conformal field theories with such a property, which are not necessarily chiral, code conformal field theories. In this paper, we introduce a notion
Topological qauntum field theory(TQFT) is a very powerful theoretical tool to study topological phases and phase transitions. In $2+1$D, it is well known that the Chern-Simons theory captures all the universal topological data of topological phases,
We give a new proof of a sumset conjecture of Furstenberg that was first proved by Hochman and Shmerkin in 2012: if $log r / log s$ is irrational and $X$ and $Y$ are $times r$- and $times s$-invariant subsets of $[0,1]$, respectively, then $dim_text{