ترغب بنشر مسار تعليمي؟ اضغط هنا

Non- Markovian Quantum Stochastic Equation For Two Coupled Oscillators

77   0   0.0 ( 0 )
 نشر من قبل Kanokov Zakirjon
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The system of nonlinear Langevin equations was obtained by using Hamiltonians operator of two coupling quantum oscillators which are interacting with heat bath. By using the analytical solution of these equations, the analytical expressions for transport coefficients was found. Generalized Langevin equations and fluctuation-dissipation relations are derived for the case of a nonlinear non-Markovian noise. The explicit expressions for the time-dependent friction and diffusion coefficients are presented for the case of linear couplings in the coordinate between the collective two coupled harmonic oscillators and heat bath.



قيم البحث

اقرأ أيضاً

119 - E. Aydiner 2021
In this study, we analytically formulated the path integral representation of the conditional probabilities for non-Markovian kinetic processes in terms of the free energy of the thermodynamic system. We carry out analytically the time-fractional kin etic equations for these processes. Thus, in a simple way, we generalize path integral solutions of the Markovian to the non-Markovian cases. We conclude that these pedagogical results can be applied to some physical problems such as the deformed ion channels, internet networks and non-equilibrium phase transition problems.
We apply the stochastic thermodynamics formalism to describe the dynamics of systems of complex Langevin and Fokker-Planck equations. We provide in particular a simple and general recipe to calculate thermodynamical currents, dissipated and propagati ng heat for networks of nonlinear oscillators. By using the Hodge decomposition of thermodynamical forces and fluxes, we derive a formula for entropy production that generalises the notion of non-potential forces and makes trans- parent the breaking of detailed balance and of time reversal symmetry for states arbitrarily far from equilibrium. Our formalism is then applied to describe the off-equilibrium thermodynamics of a few examples, notably a continuum ferromagnet, a network of classical spin-oscillators and the Frenkel-Kontorova model of nano friction.
78 - D. Semkat , D. Kremp , M. Bonitz 1999
A recently developed method for incorporating initial binary correlations into the Kadanoff-Baym equations (KBE) is used to derive a generalized T-matrix approximation for the self-energies. It is shown that the T-matrix obtains additional contributi ons arising from initial correlations. Using these results and taking the time-diagonal limit of the KBE, a generalized quantum kinetic equation in binary collision approximation is derived. This equation is a far-reaching generalization of Boltzmann-type kinetic equations: it selfconsistently includes memory effects (retardation, off-shell T-matrices) as well as many-particle effects (damping, in-medium T-Matrices) and spin-statistics effects (Pauli-blocking).
208 - T.S. Biro , K.M. Shen , B.W. Zhang 2014
Based on Tsallis entropy and the corresponding deformed exponential function, generalized distribution functions for bosons and fermions have been used since a while. However, aiming at a non-extensive quantum statistics further requirements arise fr om the symmetric handling of particles and holes (excitations above and below the Fermi level). Naive replacements of the exponential function or cut and paste solutions fail to satisfy this symmetry and to be smooth at the Fermi level at the same time. We solve this problem by a general ansatz dividing the deformed exponential to odd and even terms and demonstrate that how earlier suggestions, like the kappa- and q-exponential behave in this respect.
114 - Isao Nishikawa , Gouhei Tanaka , 2013
Universal scaling laws form one of the central issues in physics. A non-standard scaling law or a breakdown of a standard scaling law, on the other hand, can often lead to the finding of a new universality class in physical systems. Recently, we foun d that a statistical quantity related to fluctuations follows a non-standard scaling law with respect to system size in a synchronized state of globally coupled non-identical phase oscillators [Nishikawa et al., Chaos $boldsymbol{22}$, 013133 (2012)]. However, it is still unclear how widely this non-standard scaling law is observed. In the present paper, we discuss the conditions required for the unusual scaling law in globally coupled oscillator systems, and we validate the conditions by numerical simulations of several different models.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا