ﻻ يوجد ملخص باللغة العربية
We propose a method to achieve high degree control of nanomechanical oscillators by coupling their mechanical motion to single spins. By manipulating the spin alone and measuring its quantum state heralds the cooling or squeezing of the oscillator even for weak spin-oscillator couplings. We analytically show that the asymptotic behavior of the oscillator is determined by a spin-induced thermal filter function whose overlap with the initial thermal distribution of the oscillator determines its cooling, heating or squeezing. Counterintuitively, the rate of cooling dependence on the instantaneous thermal occupancy of the oscillator renders robust cooling or squeezing even for high initial temperatures and damping rates. We further estimate how the proposed scheme can be used to control the motion of a thin diamond cantilever by coupling it to its defect centers at low temperature.
We propose and experimentally demonstrate a novel approach to a heralded single photon source based on spectral multiplexing (SMUX) and feed-forward-based spectral manipulation of photons created by means of spontaneous parametric down-conversion in
The ability to accurately control the dynamics of physical systems by measurement and feedback is a pillar of modern engineering. Today, the increasing demand for applied quantum technologies requires to adapt this level of control to individual quan
The Stark shift of the hyperfine coupling constant is investigated for a P donor in Si far below the ionization regime in the presence of interfaces using Tight-binding and Band Minima Basis approaches and compared to the recent precision measurement
We propose a method for all-electrical initialization, control and readout of the spin of single ions substituted into a semiconductor. Mn ions in GaAs form a natural example. In the ions ground state the Mn core spin magnetic moment locks antiparall
Coherent coupling between single quantum objects is at the heart of modern quantum physics. When coupling is strong enough to prevail over decoherence, it can be used for the engineering of correlated quantum states. Especially for solid-state system