ﻻ يوجد ملخص باللغة العربية
Bottom-up synthesized GNRs and GNR heterostructures have promising electronic properties for high performance field effect transistors (FETs) and ultra-low power devices such as tunnelling FETs. However, the short length and wide band gap of these GNRs have prevented the fabrication of devices with the desired performance and switching behaviour. Here, by fabricating short channel (Lch ~20 nm) devices with a thin, high-k gate dielectric and a 9-atom wide (0.95 nm) armchair GNR as the channel material, we demonstrate FETs with high on-current (Ion >1 uA at Vd = -1 V) and high Ion/Ioff ~10^5 at room temperature. We find that the performance of these devices is limited by tunnelling through the Schottky barrier (SB) at the contacts and we observe an increase in the transparency of the barrier by increasing the gate field near the contacts. Our results thus demonstrate successful fabrication of high performance short-channel FETs with bottom-up synthesized armchair GNRs.
We study the contact resistance and the transfer characteristics of back-gated field effect transistors of mono- and bi-layer graphene. We measure specific contact resistivity of ~7kohm*um2 and ~30kohm*um2 for Ni and Ti, respectively. We show that th
Nanoscale semiconductor materials have been extensively investigated as the channel materials of transistors for energy-efficient low-power logic switches to enable scaling to smaller dimensions. On the opposite end of transistor applications is powe
Results of quantum mechanical simulations of the influence of edge disorder on transport in graphene nanoribbon metal oxide semiconductor field-effect transistors (MOSFETs) are reported. The addition of edge disorder significantly reduces ON-state cu
With the motivation of improving the performance and reliability of aggressively scaled nano-patterned graphene field-effect transistors, we present the first systematic experimental study on charge and current distribution in multilayer graphene fie
The performance of field effect transistors based on an single graphene ribbon with a constriction and a single back gate are studied with the help of atomistic models. It is shown how this scheme, unlike that of traditional carbon-nanotube-based tra