ترغب بنشر مسار تعليمي؟ اضغط هنا

Effect of Edge Roughness on Electronic Transport in Graphene Nanoribbon Channel Metal Oxide Semiconductor Field-Effect Transistors

173   0   0.0 ( 0 )
 نشر من قبل Dipanjan Basu
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Results of quantum mechanical simulations of the influence of edge disorder on transport in graphene nanoribbon metal oxide semiconductor field-effect transistors (MOSFETs) are reported. The addition of edge disorder significantly reduces ON-state currents and increases OFF-state currents, and introduces wide variability across devices. These effects decrease as ribbon widths increase and as edges become smoother. However the bandgap decreases with increasing width, thereby increasing the band-to-band tunneling mediated subthreshold leakage current even with perfect nanoribbons. These results suggest that without atomically precise edge control during fabrication, MOSFET performance gains through use of graphene will be difficult to achieve.



قيم البحث

اقرأ أيضاً

131 - G. Fiori , G. Iannaccone 2008
We present an atomistic three-dimensional simulation of graphene nanoribbon field effect transistors (GNR-FETs), based on the self-consistent solution of the 3D Poisson and Schroedinger equation with open boundary conditions within the non-equilibriu m Greens Function formalism and a tight-binding hamiltonian. With respect to carbon nanotube FETs, GNR-FETs exhibit comparable performance, reduced sensitivity on the variability of channel chirality, and similar leakage problems due to band-to-band tunneling. Acceptable transistor performance requires effective nanoribbon width of 1-2 nm, that could be obtained with periodic etching patterns or stress patterns.
We study the contact resistance and the transfer characteristics of back-gated field effect transistors of mono- and bi-layer graphene. We measure specific contact resistivity of ~7kohm*um2 and ~30kohm*um2 for Ni and Ti, respectively. We show that th e contact resistance is a significant contributor to the total source-to-drain resistance and it is modulated by the back-gate voltage. We measure transfer characteristics showing double dip feature that we explain as the effect of doping due to charge transfer from the contacts causing minimum density of states for graphene under the contacts and in the channel at different gate voltage.
We report the realization of top-gated graphene nanoribbon field effect transistors (GNRFETs) of ~10 nm width on large-area epitaxial graphene exhibiting the opening of a band gap of ~0.14 eV. Contrary to prior observations of disordered transport an d severe edge-roughness effects of GNRs, the experimental results presented here clearly show that the transport mechanism in carefully fabricated GNRFETs is conventional band-transport at room temperature, and inter-band tunneling at low temperature. The entire space of temperature, size, and geometry dependent transport properties and electrostatics of the GNRFETs are explained by a conventional thermionic emission and tunneling current model. Our combined experimental and modeling work proves that carefully fabricated narrow GNRs behave as conventional semiconductors, and remain potential candidates for electronic switching devices.
The spin field effect transistor envisioned by Datta and Das opens a gateway to spin information processing. Although the coherent manipulation of electron spins in semiconductors is now possible, the realization of a functional spin field effect tra nsistor for information processing has yet to be achieved, owing to several fundamental challenges such as the low spin-injection efficiency due to resistance mismatch, spin relaxation, and the spread of spin precession angles. Alternative spin transistor designs have therefore been proposed, but these differ from the field effect transistor concept and require the use of optical or magnetic elements, which pose difficulties for the incorporation into integrated circuits. Here, we present an all-electric and all-semiconductor spin field effect transistor, in which these obstacles are overcome by employing two quantum point contacts as spin injectors and detectors. Distinct engineering architectures of spin-orbit coupling are exploited for the quantum point contacts and the central semiconductor channel to achieve complete control of the electron spins -- spin injection, manipulation, and detection -- in a purely electrical manner. Such a device is compatible with large-scale integration and hold promise for future spintronic devices for information processing.
The performance of field effect transistors based on an single graphene ribbon with a constriction and a single back gate are studied with the help of atomistic models. It is shown how this scheme, unlike that of traditional carbon-nanotube-based tra nsistors, reduces the importance of the specifics of the chemical bonding to the metallic electrodes in favor of the carbon-based part of device. The ultimate performance limits are here studied for various constriction and metal-ribbon contact models. In particular we show that, even for poorly contacting metals, properly taylored constrictions can give promising values for both the on-conductance and the subthreshold swing.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا