ﻻ يوجد ملخص باللغة العربية
Given two complex Banach spaces $X_1$ and $X_2$, a tensor product of $X_1$ and $X_2$, $X_1tilde{otimes}X_2$, in the sense of J. Eschmeier ([5]), and two finite tuples of commuting operators, $S=(S_1,ldots ,S_n)$ and $T=(T_1,ldots ,T_m)$, defined on $X_1$ and $X_2$ respectively, we consider the $(n+m)$-tuple of operators defined on $X_1tilde{otimes}X_2$, $(Sotimes I,Iotimes T)= (S_1otimes I,ldots ,S_notimes I,Iotimes T_1,ldots ,I otimes T_m)$, and we give a description of the semi-Browder joint spectra introduced by V. Kordula, V. Muller and V. Rako$check{c}$evi$acute{ c}$ in [7] and of the split semi-Browder joint spectra (see section 3), of the $(n+m)$-tuple $(Sotimes I ,Iotimes T)$, in terms of the corresponding joint spectra of $S$ and $T$. This result is in some sense a generalization of a formula obtained for other various Browder spectra in Hilbert spaces and for tensor products of operators and for tuples of the form $(Sotimes I ,Iotimes T)$. In addition, we also describe all the mentioned joint spectra for a tuple of left and right multiplications defined on an operator ideal between Banach spaces in the sense of [5].
Given two complex Banach spaces $X_1$ and $X_2$, a tensor product $X_1tilde{otimes} X_2$ of $X_1$ and $X_2$ in the sense of [14], two complex solvable finite dimensional Lie algebras $L_1$ and $L_2$, and two representations $rho_icolon L_ito {rm L}(X
We prove that every positive semidefinite matrix over the natural numbers that is eventually 0 in each row and column can be factored as the product of an upper triangular matrix times a lower triangular matrix. We also extend some known results abou
A Banach space operator $Tin B({cal X})$ is polaroid if points $lambdainisosigmasigma(T)$ are poles of the resolvent of $T$. Let $sigma_a(T)$, $sigma_w(T)$, $sigma_{aw}(T)$, $sigma_{SF_+}(T)$ and $sigma_{SF_-}(T)$ denote, respectively, the approximat
We consider the complex solvable non-commutative two dimensional Lie algebra $L$, $L=<y>oplus <x>$, with Lie bracket $[x,y]=y$, as linear bounded operators acting on a complex Hilbert space $H$. Under the assumption $R(y)$ closed, we reduce the compu
We show that Kraus property $S_{sigma}$ is preserved under taking weak* closed sums with masa-bimodules of finite width, and establish an intersection formula for weak* closed spans of tensor products, one of whose terms is a masa-bimodule of finite