ترغب بنشر مسار تعليمي؟ اضغط هنا

Upper Triangular Operator Matrices, SVEP and Browder. Weyl Theorems

345   0   0.0 ( 0 )
 نشر من قبل Bhagwati Duggal Prashad
 تاريخ النشر 2008
  مجال البحث
والبحث باللغة English
 تأليف B. P. Duggal




اسأل ChatGPT حول البحث

A Banach space operator $Tin B({cal X})$ is polaroid if points $lambdainisosigmasigma(T)$ are poles of the resolvent of $T$. Let $sigma_a(T)$, $sigma_w(T)$, $sigma_{aw}(T)$, $sigma_{SF_+}(T)$ and $sigma_{SF_-}(T)$ denote, respectively, the approximate point, the Weyl, the Weyl essential approximate, the upper semi--Fredholm and lower semi--Fredholm spectrum of $T$. For $A$, $B$ and $Cin B({cal X})$, let $M_C$ denote the operator matrix $(A & C 0 & B)$. If $A$ is polaroid on $pi_0(M_C)={lambdainisosigma(M_C) 0<dim(M_C-lambda)^{-1}(0)<infty}$, $M_0$ satisfies Weyls theorem, and $A$ and $B$ satisfy either of the hypotheses (i) $A$ has SVEP at points $lambdainsigma_w(M_0)setminussigma_{SF_+}(A)$ and $B$ has SVEP at points $muinsigma_w(M_0)setminussigma_{SF_-}(B)$, or, (ii) both $A$ and $A^*$ have SVEP at points $lambdainsigma_w(M_0)setminussigma_{SF_+}(A)$, or, (iii) $A^*$ has SVEP at points $lambdainsigma_w(M_0)setminussigma_{SF_+}(A)$ and $B^*$ has SVEP at points $muinsigma_w(M_0)setminussigma_{SF_-}(B)$, then $sigma(M_C)setminussigma_w(M_C)=pi_0(M_C)$. Here the hypothesis that $lambdainpi_0(M_C)$ are poles of the resolvent of $A$ can not be replaced by the hypothesis $lambdainpi_0(A)$ are poles of the resolvent of $A$. For an operator $Tin B(X)$, let $pi_0^a(T)={lambda:lambdainisosigma_a(T), 0<dim(T-lambda)^{-1}(0)<infty}$. We prove that if $A^*$ and $B^*$ have SVEP, $A$ is polaroid on $pi_0^a(M)$ and $B$ is polaroid on $pi_0^a(B)$, then $sigma_a(M)setminussigma_{aw}(M)=pi_0^a(M)$.



قيم البحث

اقرأ أيضاً

345 - Minghua Lin 2014
Let $T=begin{bmatrix} X &Y 0 & Zend{bmatrix}$ be an $n$-square matrix, where $X, Z$ are $r$-square and $(n-r)$-square, respectively. Among other determinantal inequalities, it is proved $det(I_n+T^*T)ge det(I_r+X^*X)cdot det(I_{n-r}+Z^*Z)$ with equality holds if and only if $Y=0$.
135 - Delio Mugnolo 2013
We survey some known results about operator semigroup generated by operator matrices with diagonal or coupled domain. These abstract results are applied to the characterization of well-/ill-posedness for a class of evolution equations with dynamic bo undary conditions on domains or metric graphs. In particular, our ill-posedness results on the heat equation with general Wentzell-type boundary conditions complement those previously obtained by, among others, Bandle-von Below-Reichel and Vitillaro-Vazquez.
69 - Enrico Boasso 2016
Given two complex Banach spaces $X_1$ and $X_2$, a tensor product of $X_1$ and $X_2$, $X_1tilde{otimes}X_2$, in the sense of J. Eschmeier ([5]), and two finite tuples of commuting operators, $S=(S_1,ldots ,S_n)$ and $T=(T_1,ldots ,T_m)$, defined on $ X_1$ and $X_2$ respectively, we consider the $(n+m)$-tuple of operators defined on $X_1tilde{otimes}X_2$, $(Sotimes I,Iotimes T)= (S_1otimes I,ldots ,S_notimes I,Iotimes T_1,ldots ,I otimes T_m)$, and we give a description of the semi-Browder joint spectra introduced by V. Kordula, V. Muller and V. Rako$check{c}$evi$acute{ c}$ in [7] and of the split semi-Browder joint spectra (see section 3), of the $(n+m)$-tuple $(Sotimes I ,Iotimes T)$, in terms of the corresponding joint spectra of $S$ and $T$. This result is in some sense a generalization of a formula obtained for other various Browder spectra in Hilbert spaces and for tensor products of operators and for tuples of the form $(Sotimes I ,Iotimes T)$. In addition, we also describe all the mentioned joint spectra for a tuple of left and right multiplications defined on an operator ideal between Banach spaces in the sense of [5].
In this survey we present applications of the ideas of complement and neighborhood in the theory embeddings of manifolds into Euclidean space (in codimension at least three). We describe how the combination of these ideas gives a reduction of embedda bility and isotopy problems to algebraic problems. We present a more clarified exposition of the Browder-Levine theorem on realization of normal systems. Most of the survey is accessible to non-specialists in the theory of embeddings.
147 - Fumio Hiai 2018
We obtain limit theorems for $Phi(A^p)^{1/p}$ and $(A^psigma B)^{1/p}$ as $ptoinfty$ for positive matrices $A,B$, where $Phi$ is a positive linear map between matrix algebras (in particular, $Phi(A)=KAK^*$) and $sigma$ is an operator mean (in particu lar, the weighted geometric mean), which are considered as certain reciprocal Lie-Trotter formulas and also a generalization of Katos limit to the supremum $Avee B$ with respect to the spectral order.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا