ترغب بنشر مسار تعليمي؟ اضغط هنا

Control of reaction-diffusion equations on time-evolving manifolds

186   0   0.0 ( 0 )
 نشر من قبل Nastassia Pouradier Duteil
 تاريخ النشر 2016
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Among the main actors of organism development there are morphogens, which are signaling molecules diffusing in the developing organism and acting on cells to produce local responses. Growth is thus determined by the distribution of such signal. Meanwhile, the diffusion of the signal is itself affected by the changes in shape and size of the organism. In other words, there is a complete coupling between the diffusion of the signal and the change of the shapes. In this paper, we introduce a mathematical model to investigate such coupling. The shape is given by a manifold, that varies in time as the result of a deformation given by a transport equation. The signal is represented by a density, diffusing on the manifold via a diffusion equation. We show the non-commutativity of the transport and diffusion evolution by introducing a new concept of Lie bracket between the diffusion and the transport operator. We also provide numerical simulations showing this phenomenon.



قيم البحث

اقرأ أيضاً

Reaction-diffusion equations are widely used as the governing evolution equations for modeling many physical, chemical, and biological processes. Here we derive reaction-diffusion equations to model transport with reactions on a one-dimensional domai n that is evolving. The model equations, which have been derived from generalized continuous time random walks, can incorporate complexities such as subdiffusive transport and inhomogeneous domain stretching and shrinking. A method for constructing analytic expressions for short time moments of the position of the particles is developed and moments calculated from this approach are shown to compare favourably with results from random walk simulations and numerical integration of the reaction transport equation. The results show the important role played by the initial condition. In particular, it strongly affects the time dependence of the moments in the short time regime by introducing additional drift and diffusion terms. We also discuss how our reaction transport equation could be applied to study the spreading of a population on an evolving interface.
We carry out the enhanced group classification of a class of (1+1)-dimensional nonlinear diffusion-reaction equations with gradient-dependent diffusivity using the two-step version of the method of furcate splitting. For simultaneously finding the eq uivalence groups of an unnormalized class of differential equations and a collection of its subclasses, we suggest an optimized version of the direct method. The optimization includes the preliminary study of admissible transformations within the entire class and the successive splitting of the corresponding determining equations with respect to arbitrary elements and their derivatives depending on auxiliary constraints associated with each of required subclasses. In the course of applying the suggested technique to subclasses of the class under consideration, we construct, for the first time, a nontrivial example of finite-dimensional effective generalized equivalence group. Using the method of Lie reduction and the generalized separation of variables, exact solutions of some equations under consideration are found.
We present a computational approach for solving reaction-diffusion equations on evolving surfaces which have been obtained from cell image data. It is based on finite element spaces defined on surface triangulations extracted from time series of 3D i mages. A model for the transport of material between the subsequent surfaces is required where we postulate a velocity in normal direction. We apply the technique to image data obtained from a spreading neutrophil cell. By simulating FRAP experiments we investigate the impact of the evolving geometry on the recovery. We find that for idealised FRAP conditions, changes in membrane geometry, easily account for differences of $times 10$ in recovery half-times, which shows that experimentalists must take great care when interpreting membrane photobleaching results. We also numerically solve an activator -- depleted substrate system and report on the effect of the membrane movement on the pattern evolution.
385 - Paul W.Y. Lee 2013
We prove a version of differential Harnack inequality for a family of sub-elliptic diffusions on Sasakian manifolds under certain curvature conditions.
Under consideration is the hyperbolic relaxation of a semilinear reaction-diffusion equation on a bounded domain, subject to a dynamic boundary condition. We also consider the limit parabolic problem with the same dynamic boundary condition. Each pro blem is well-posed in a suitable phase space where the global weak solutions generate a Lipschitz continuous semiflow which admits a bounded absorbing set. We prove the existence of a family of global attractors of optimal regularity. After fitting both problems into a common framework, a proof of the upper-semicontinuity of the family of global attractors is given as the relaxation parameter goes to zero. Finally, we also establish the existence of exponential attractors.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا