ﻻ يوجد ملخص باللغة العربية
The recently discovered brown dwarf WISE 0855 presents our first opportunity to directly study an object outside the Solar System that is nearly as cold as our own gas giant planets. However the traditional methodology for characterizing brown dwarfs---near infrared spectroscopy---is not currently feasible as WISE 0855 is too cold and faint. To characterize this frozen extrasolar world we obtained a 4.5-5.2 $mu$m spectrum, the same bandpass long used to study Jupiters deep thermal emission. Our spectrum reveals the presence of atmospheric water vapor and clouds, with an absorption profile that is strikingly similar to Jupiter. The spectrum is high enough quality to allow the investigation of dynamical and chemical processes that have long been studied in Jupiters atmosphere, but now on an extrasolar world.
Context: WISE J085510.83-071442.5 (W0855) is a unique object: with Teff ca. 250 K, it is the coldest known brown dwarf (BD), located at only ca.2.2 pc form the Sun. It is extremely faint, which makes any astronomical observations difficult. However,
Variations of eclipse arrival times have recently been detected in several post common envelope binaries consisting of a white dwarf and a main sequence companion star. The generally favoured explanation for these timing variations is the gravitation
This White Paper to the National Academy of Sciences Astro2010 Decadal Review Committee highlights cross-disciplinary science opportunities over the next decade with cold brown dwarfs, sources defined here as having photospheric temperatures less than ~1000 K.
We report the discovery of OGLE-2016-BLG-1190Lb, which is likely to be the first Spitzer microlensing planet in the Galactic bulge/bar, an assignation that can be confirmed by two epochs of high-resolution imaging of the combined source-lens baseline
The very recent discovery of planets orbiting very low mass stars sheds light on these exotic objects. Planetary systems around low-mass stars and brown dwarfs are very different from our solar system: the planets are expected to be much closer than